

MEAP Edition
Manning Early Access Program

Netty in Action
Version 5

Copyright 2013 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

brief contents
PART 1: GETTING STARTED

1. Netty and Java NIO APIs
2. Your first Netty application
3. Netty from the ground up

PART 2: CORE FUNCTIONS/PARTS

4. Transports
5. Buffers
6. ChannelHandler
7. Codec
8. Provided ChannelHandlers and Codecs
9. Bootstrapping Netty applications

PART 3: NETTY BY EXAMPLE

10. Unit-test your code
11. WebSockets
12. SPDY
13. Broadcasting events via UDP

PART 4: ADVANCED TOPICS

14. Implement a custom codec
15. Choosing the right thread model
16. Deregister/re-register with EventLoop
17. Case studies
Appendix A: The community � how to get involved
Appendix B: Related books
Appendix C: Related projects

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

http://www.manning-sandbox.com/forum.jspa?forumID=857

1
Netty and Java NIO APIs

This chapter covers

 Netty architecture

 Why we need non-blocking IO (NIO)

 Blocking versus non-blocking IO

 Known problems with the JDK�s NIO implementation and Netty�s solutions

This chapter introduces Netty, but it�s focus is Java�s non-blocking IO (NIO) API. If you�re new
to networking on the JVM, this chapter is an ideal place to begin, but it�s also a good refresher
for the seasoned Java developer. If you�re familiar with NIO and NIO.2, feel free to skip ahead
to chapter 2, which dives into Netty after you get it running on your machine.

Netty is a NIO client-server framework, which enables quick and easy development of
network applications, such as protocol servers and clients. Netty offers you a new way to
develop your network applications, which makes it easy and scalable. It achieves this by
abstracting away the complexity involved and by providing an easy-to-use API that decouples
business-logic from the network-handling code. Because it�s built for NIO, the entire Netty API
is asynchronous.

Generally, network applications have scalability issues, whether they�re based on Netty or
other NIO APIs. A key component of Netty is its asynchronous nature, and this chapter
discusses synchronous (blocking) and asynchronous (non-blocking) IO to illustrate why and
how asynchronous code solves scalability problems.

For those new to networking, this chapter gives you an understanding of networking
applications, in general, and how Netty helps implement them. It explains how to use
fundamental Java networking APIs, discusses both its strengths and weaknesses, and shows
how Netty addresses Java issues, such as the Epoll bug or memory leaks.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

1

http://www.manning-sandbox.com/forum.jspa?forumID=857

By the end of the chapter, you�ll understand what Netty is and what it offers, and you�ll gain
enough understanding about Java�s NIO and asynchronous processing to enable you to work
through the other chapters of this book.

1.1 Why Netty?
In the words of David Wheeler, �all problems in computer science can be solved by another
level of indirection.�1 As an NIO client-server framework, Netty offers one such level of
indirection. Netty simplifies network programming of TCP or UDP servers but you can still
access and use the low-level APIs because Netty provides high-level abstractions.

1.1.1 Not all networking frameworks are alike
With Netty, �quick and easy� doesn�t mean that a resulting application suffers from
maintainability or performance issues. The experiences earned from the implementation of
protocols such as FTP, SMTP, HTTP, WebSocket, SPDY and various binary and text-based
legacy protocols led Netty�s founders to take great care in its design. As a result, Netty
successfully delivers ease of development, performance, stability, and flexibility without
compromise.

High-profile companies and open-source projects including RedHat, Twitter, Infinispan, and
HornetQ, Vert.x, Finagle, Akka, Apache Cassandra, Elasticsearch, and others use and
contribute to Netty. It�s also fair to say that some of the features of Netty are a result of the
needs of these projects. Over the years, Netty has become more widely known and is one of
the most-used networking frameworks for the JVM, as evident by its use in several popular
open- and closed-source projects. In fact, Netty was awarded the Duke�s Choice Award2 in
2011.

Also in 2011, Netty founder Trustin Lee left RedHat to join Twitter. At this point, the Netty
project became independent of any company in an effort to simplify contributions to it. Both
Red Hat and Twitter use Netty, so it should come as no surprise that these two companies are
the biggest contributors to Netty at the time of writing. Adoption of Netty continues to
increases, as does the number of individual contributors. The community of Netty users is
active and the project remains vibrant.

1.1.2 Netty boasts a rich feature set
As you work through the chapters of this book, you�ll learn about and use many of Netty�s
features. Figure 1.1 highlights some of the supported transports and protocols to give you a
brief overview of the Netty architecture.

1 Add citation
2 Add citation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

2

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 1.1 Overview of the model, transports, and protocols

In addition to its wide array of transports and protocols, Netty offers benefits in various
development areas (see table 1.1).

Table 1.1 Netty gives developers a full set of tools.

Development Area Netty Features

Design  Unified API for various transport types�blocking and non-blocking socket

 Flexible to use

 Simple but powerful thread-model

 True connectionless datagram socket support

 Chaining of logics to make reuse easy

Ease of Use  Well-documented Javadoc and plenty of examples provided

 No additional dependencies except JDK 1.6 (or above). Some features are
supported only in Java 1.7 and above. Other features may have other
dependencies, but these are optional

Performance  Better throughput; lower latency than core Java APIs

 Less resource consumption because of pooling and reuse

 Minimized unnecessary memory copy

Robustness  No more OutOfMemoryError due to fast, slow, or overloaded connection.

 No more unfair read/write ratio often found in a NIO application in high-speed

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

3

http://www.manning-sandbox.com/forum.jspa?forumID=857

networks

Security  Complete SSL/TLS and StartTLS support

 Runs in a restricted environment such as Applet or OSGI

Community  Release early, release often

 Active

In addition to the features listed, Netty also ships workarounds for known bugs/limitations in
Java�s NIO, so you don�t need to hassle with them.

With an overview of Netty�s features under your belt, it�s time to take a closer look at
asynchronous processing and the idea behind it. NIO and Netty make heavy use of
asynchronous code, and without understanding the impact of the choices associated with this,
it�s hard to get the best out of it. In the next section, we�ll take a look at why we need
asynchronous APIs.

1.2 Asynchronous by design
The entire Netty API is asynchronous. Asynchronous processing isn�t new; the idea has been
around for a while. These days, however, IO is often a bottleneck, and asynchronous
processing is becoming more important every day. But how does it work and what are the
different patterns available?

Asynchronous processing encourages you to use your resources more efficiently by allowing
you to start a task and get notified when it�s done rather than waiting for it to complete. You�re
free to do something else while the task is running.

This section explains the two most common ways to work with or implement an
asynchronous API and discusses the differences between the techniques.

1.2.1 Callbacks
Callbacks are a technique often used with asynchronous processing. A callback is passed to the
method and executes after the method completes. You may recognize this pattern from
JavaScript, in which callbacks are at the heart of the language. The following listing shows how
to use this technique to fetch data.

Listing 1.1 Callback example
public interface Fetcher {
 void fetchData(FetchCallback callback);
}

public interface FetchCallback {
 void onData(Data data);
 void onError(Throwable cause);
}

public class Worker {
 public void doWork() {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

4

http://www.manning-sandbox.com/forum.jspa?forumID=857

 Fetcher fetcher = ...
 fetcher.fetchData(new FetchCallback() {
 @Override
 public void onData(Data data) { #1
 System.out.println("Data received: " + data);
 }

 @Override
 public void onError(Throwable cause) { #2
 System.err.println("An error accour: " + cause.getMessage());
 }
 });
 ...
}
}

#1 Call if data is fetched without error
#2 Call if error is received during fetch

The Fetcher.fetchData() method takes one argument of type FetchCallback, which is
called when either the data is fetched or an error occurs.

For each of these situations, it provides one method:

 FetchCallback.onData()�Called if the data was fetched without an error (#1)

 FetchCallback.onError()�Called if an error was received during the fetch
operation (#2)

You can, therefore, move the execution of these methods from the �caller� thread to some
other thread. There is no guarantee whenever one of the methods of the FetchCallback will
be called.

One problem with the callback approach is that it can lead to spaghetti code when you chain
many asynchronous method calls with different callbacks. Some people tend to think this
approach results in hard-to-read code, but I think it�s more a matter of taste and style. For
example, Node.js, which is based on JavaScript, is increasingly popular. It makes heavy use of
callbacks, yet many people find that it�s easy to read and write applications with.

1.2.2 Futures
A second technique is the use of Futures. A Future is an abstraction, which represents a value
that may become available at some point. A Future object either holds the result of a
computation or, in the case of a failed computation, an exception.

Java ships with a Future interface in the java.util.concurrent package, which uses it by its
Executor for asynchronous processing.

For example, as shown in the next listing, whenever you pass a Runnable object to the
ExecutorService.submit() method, you get a Future back, which you can use to check
if the execution completed.

Listing 1.2 Future example via ExecutorService
ExecutorService executor = Executors.newCachedThreadPool();
Runnable task1 = new Runnable() {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

5

http://www.manning-sandbox.com/forum.jspa?forumID=857

 @Override
 public void run() {
 doSomeHeavyWork();
 }
 ...
}
Callable<Interger> task2 = new Callable() {

 @Override
 public Integer call() {
 return doSomeHeavyWorkWithResul();
 }
 ...
}

Future<?> future1 = executor.submit(task1);
Future<Integer> future2 = executor.submit(task2);
while (!future1.isDone() || !future2.isDone()) {
 ...
 // do something else
 ...
}

#A
#B

You can also use this technique in your own API. For example, you could implement a Fetcher
(as in listing 1.1) that uses a Future. As shown in the following listing.

Listing 1.3 Future usage for Fetcher
public interface Fetcher {
 Future<Data> fetchData();
}

public class Worker {
 public void doWork() {
 Fetcher fetcher = ...
 Future<Data> future = fetcher.fetchData();
 try {
 while(!fetcher.isDone()) {
 ...
 // do something else
 }
System.out.println("Data received: " + future.get());

 } catch (Throwable cause) {
 System.err.println("An error accour: " +
cause.getMessage());

 }
 }
}

#A
#B

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

6

http://www.manning-sandbox.com/forum.jspa?forumID=857

Again, you check if the fetcher is done yet and if not, do some other work. Sometimes using
futures can feel ugly because you need to check the state of the Future in intervals to see if it
is completed yet, whereas with a callback you�re notified directly after it�s done.

After seeing both common techniques for asynchronous execution, you may wonder which
is the best. There is no clear answer here. Netty, in fact, uses a mixture of the two to provide
you with the best of both worlds.

The next section provides an introduction to writing networking applications on the JVM first
using blocking, then using the NIO and NIO.2 APIs. These foundations are essential for getting
the most out of subsequent chapters of this book. If you�re familiar with the Java networking
APIs, then perhaps only a quick scan of the next section is required to refresh your memory.

1.3 Blocking versus non-blocking IO on the JVM
The continued growth of the web has increased the need for networking applications that are
capable of handling its scale. Efficiency has become important in meeting these demands.
Fortunately, Java comes with the tools needed to create efficient, scalable networking
applications. Although early versions of Java included networking support, it was Java 1.4 that
introduced the NIO API and paved the way for us to write more efficient networking
applications.

The new API (NIO.2), introduced in Java 7, was designed to allow us to write asynchronous
networking code but tries to provide a more high-level API than does its predecessor.

To do networking-related tasks in Java, you can take one of two approaches:

 use IO , also known as blocking IO

 use NIO, also known as new/non-blocking IO

New or non-blocking?
The N in NIO is typically thought to mean �non-blocking� rather than �new.�NIO has been
around for so long now that nobody calls it �new� IO anymore. Most people refer to it as �non-
blocking� IO�

Figure 1.2 shows how the blocking IO uses one dedicated thread to handle one connection,
which means that you have a 1:1 relationship between connections and threads and are,
therefore, limited by the number of threads you can create in the JVM.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

7

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 1.2 Blocking IO

In contrast, figure 1.3 shows how blocking IO lets you use a selector to handle multiple
connections.

Figure 1.3 Non-blocking IO

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

8

http://www.manning-sandbox.com/forum.jspa?forumID=857

Keeping these figures in mind, let�s dive deeper into blocking IO and non-blocking IO. I�ll
use a simple echo server to demonstrate the difference between the IO and NIO. An echo
server accepts client requests and echos (returns) the data that it receives from the clients.

1.3.1 EchoServer based on blocking IO
This first version of EchoServer, based on blocking IO, is probably the most common way to
write network-related applications for two main reasons: the blocking IO API has been around
since early versions of Java, and it�s relatively easy to use.

Unless you run into scalability issues, the blocking IO isn�t generally a problem. The
following listing shows the EchoServer implementation.

Listing 1.4 EchoServer v1: IO
public class PlainEchoServer {

 public void serve(int port) throws IOException {
 final ServerSocket socket = new ServerSocket(port); #1
 try {
 while (true) {
 final Socket clientSocket = socket.accept(); #2
 System.out.println("Accepted connection from " +
clientSocket);

 new Thread(new Runnable() { #3
 @Override
 public void run() {
 try {

 BufferedReader reader = new BufferedReader(
 new
InputStreamReader(clientSocket.getInputStream()));
 PrintWriter writer = new PrintWriter(clientSocket
 .getOutputStream(), true);
 while(true) { #4
 writer.println(reader.readLine());
 writer.flush();
 }
 } catch (IOException e) {
 e.printStackTrace();
 try {
 clientSocket.close();
 } catch (IOException ex) {
 // ignore on close
 }
 }
 }
 }).start(); #5
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

#1 Bind server to port

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

9

http://www.manning-sandbox.com/forum.jspa?forumID=857

#2 Block until new client connection is accepted
#3 Create new thread to handle client connection
#4 Read data from client and write it back
#5 Start thread

This listing should look familiar to you if you�ve ever written a network application in Java. But
let�s pause and think about it: what problems may be present with this sort of �design�?

Let�s revisit the following lines:

final Socket clientSocket = socket.accept();
new Thread(new Runnable() {
 @Override
 public void run() {
 ...
 }
}).start();

One thread is needed for each new client connection that is served. You may argue that we
could make use of a thread pool to get rid of the overhead of creating the threads, but that
would only help for a while. The fundamental problem still remains: the number of concurrent
clients that can be served is limited to the number of threads that you can have �alive� at the
same time. When your application needs to handle thousands of concurrent clients, that�s a big
problem.

This problem isn�t present when using NIO as I�ll demonstrate in the next version of
EchoServer. But first, it�s important to understand a couple of key NIO concepts.

1.3.2 Non-blocking IO basics
Java 7 introduced a new NIO API known as NIO.2, but you can use either NIO or NIO.2.
Although the new API is also asynchronous, it�s different from the original NIO implementation
in both its API and implementation. Still, the APIs aren�t completely different, and both share
common features. For example, both implementations use an abstraction called a ByteBuffer
as a data container.

BYTEBUFFER

A ByteBuffer is fundamental to both NIO APIs and, indeed, to Netty. A ByteBuffer can
either be allocated on the heap or directly, which means it�s stored outside of the Heap-
Space. Usually, using a direct buffer is faster when passing it to the channel, but the
allocation/deallocation costs are higher. In both cases, the API for a ByteBuffer is the same,
which provides a unified way of accessing and manipulating data. A ByteBuffer allows the
same data to be easily shared between ByteBuffer instances without the need to do any
memory copying. It further allows slicing and other operations to limit the data that�s visible.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

10

http://www.manning-sandbox.com/forum.jspa?forumID=857

Slicing
Slicing a ByteBuffer allows to create a new ByteBuffer that share the same data as the intial
ByteBuffer but only expose a sub-region of it. This is useful to minimize memory copies while
still only allow access to a part of the data

 Typical uses of the ByteBuffer include the following:

 Writing data to the ByteBuffer

 Calling ByteBuffer.flip() to switch from write-mode to reading-mode.

 Reading data out of the ByteBuffer

 Calling either ByteBuffer.clear() or ByteBuffer.compact()

When you write data to the ByteBuffer, it keeps track of the amount of data you�ve written
by updating the position of the write index in the buffer; this can also be done manually.

When you�re ready to read the data, you call Bytebuffer.flip() to switch from writing-
mode to reading-mode. Calling ByteBuffer.flip()sets the limit of the ByteBuffer to the
current position and then update its position to 0. This way, you can read all of the data in the
ByteBuffer.

To write to the ByteBuffer again, to switch back to writing-mode and then call either of
the following methods:

 ByteBuffer.clear()�Clears the entire ByteBuffer

 Bytebuffer.compact()�Clears only the data that�s already been read via memory
copying

ByteBuffer.compact()moves all unread data to the beginning of the ByteBuffer and
adjusts the position. The following listing shows how you would typically use a ByteBuffer.

Listing 1.5 Working with a ByteBuffer
Channel inChannel =;
ByteBuffer buf = ByteBuffer.allocate(48);

int bytesRead = -1;
do {
 bytesRead = inChannel.read(buf); #1
 if (bytesRead != -1) {
 buf.flip(); #2
 while(buf.hasRemaining()){
 System.out.print((char) buf.get()); #3
 }
 buf.clear(); #4
 }
} while (bytesRead != -1);
inChannel.close();

#1Read data from the Channel to the ByteBuffer
#2 Make buffer ready for read

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

11

http://www.manning-sandbox.com/forum.jspa?forumID=857

#3 Read the bytes in the ByteBuffer; every get() operation updates the position by 1
#4 Make the ByteBuffer ready for writing again

Now that you understand how a ByteBuffer is used, let�s move on to the concept of
selectors.

WORKING WITH NIO SELECTORS

The NIO API, which is still the most widely used of the two NIO APIs, uses a selector-based
approach to handle network events and data.

A channel represents a connection to an entity capable of performing IO operations such as
a file or a socket.

A selector is a NIO component that determines if one or more channels are ready for
reading and/or writing, thus a single select selector can be used to handle multiple
connections, alleviating the need for the thread-per-connection model you saw in the blocking
IO EchoServer example.

To use selectors, you typically complete the following steps.

1. Create one or more selectors to which opened channels (sockets) can be registered.

2. When a channel is registered, you specify which events you�re interested in listening in.

The four available events (or Ops/operations) are:

 OP_ACCEPT�Operation-set bit for socket-accept operations

 OP_CONNECT�Operation-set bit for socket-connect operations

 OP_READ�Operation-set bit for read operations

 OP_WRITE�Operation-set bit for write operations

3. When channels are registered, you call the Selector.select() method to block until
one of these events occurs.

4. When the method unblocks, you can obtain all of the SelectionKey instances (which
hold the reference to the registered channel and to selected Ops) and do something.

What exactly you do depends on which operation is ready. A SelectedKey can include
more than one operation at any given time.

To see how this works, let�s implement a non-blocking version of EchoServer. You�ll get an
opportunity to work with both of the NIO implementations in more detail. You�ll also see that
the ByteBuffer is essential to both.

1.3.3 EchoServer based on NIO
As shown in the following listing, this version of the EchoServer uses the asynchronous NIO
API, which allows you to serve thousands of concurrent clients with one thread!

Listing 1.6 EchoServer v2: NIO
public class PlainNioEchoServer {
 public void serve(int port) throws IOException {
 System.out.println("Listening for connections on port " + port);

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

12

http://www.manning-sandbox.com/forum.jspa?forumID=857

 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 ServerSocket ss = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ss.bind(address); #1
 serverChannel.configureBlocking(false);
Selector selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT); #2

 while (true) {
 try {
 selector.select(); #3
 } catch (IOException ex) {
 ex.printStackTrace();
 // handle in a proper way
 break;
 }

 Set readyKeys = selector.selectedKeys(); #4
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove(); #5
 try {
 if (key.isAcceptable()) {
 ServerSocketChannel server = (ServerSocketChannel)
key.channel();
 SocketChannel client = server.accept(); #6
 System.out.println("Accepted connection from " +
client);
 client.configureBlocking(false);
 client.register(selector, SelectionKey.OP_WRITE |
SelectionKey.OP_READ, ByteBuffer.allocate(100)); #7
 }
 if (key.isReadable()) { #8
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 client.read(output); #9
 }
 if (key.isWritable()) { #10
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 output.flip();
 client.write(output); #11
 output.compact();
 }
 } catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 } catch (IOException cex) {
 }
 }
 }
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

13

http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 Bind server to port
#2 Register the channel with the selector to be interested in new Client connections that get accepted
#3 Block until something is selected
#4 Get all SelectedKey instances
#5 Remove the SelectedKey from the iterator
#6 Accept the client connection
#7 Register connection to selector and set ByteBuffer
#8 Check for SelectedKey for read
#9 Read data to ByteBuffer
#10 Check for SelectedKey for write
#11 Write data from ByteBuffer to channel

This example is more complex than the previous version of EchoServer. This complexity is a
trade off; asynchronous code is typically more complicated than its synchronous counterpart.

Semantically, the original NIO and the new NIO.2 API are similar, but their implementations
are different. We�ll take a look the differences next, and we�ll implement version 3 of
EchoServer.

1.3.4 EchoServer based on NIO.2
Unlike the original NIO implementation, NIO.2 allows you to issue IO operations and provide
what is called a completion handler (CompletionHandler class). This completion handler
gets executed after the operation completes. Therefore, execution of the completion handler is
driven by the underlying system and the implementation is hidden from the developer. It also
guarantees that only one CompletionHandler is executed for channel at the same time. This
approach helps to simplify the code because it removes the complexity that comes with
multithreaded execution.

The major difference between the original NIO and NIO.2 is that you don�t have to check
whether an event accours on the Channel and then trigger some action. In NIO.2 you can just
trigger an IO operation and register a completion handler with it, this handler will then get
notified once the operation complates. This removes the need to create your own application
logic to check for completion, which itself results in unnecessary processing.

Now let�s see how the same asynchronous EchoServer would be implemented with
NIO2,implementation as shown in the next listing.

Listing 1.7 EchoServer v3: NIO.2
public class PlainNio2EchoServer {
 public void serve(int port) throws IOException {
 System.out.println("Listening for connections on port " + port);
 final AsynchronousServerSocketChannel serverChannel =
AsynchronousServerSocketChannel.open();
 InetSocketAddress address = new InetSocketAddress(port);
 serverChannel.bind(address); #1
 final CountDownLatch latch = new CountDownLatch(1);
 serverChannel.accept(null, new
CompletionHandler<AsynchronousSocketChannel, Object>() { #2
 @Override
 public void completed(final AsynchronousSocketChannel channel,
Object attachment) {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

14

http://www.manning-sandbox.com/forum.jspa?forumID=857

 serverChannel.accept(null, this); #3
 ByteBuffer buffer = ByteBuffer.allocate(100);
 channel.read(buffer, buffer,
 new EchoCompletionHandler(channel)); #4
 }

 @Override
 public void failed(Throwable throwable, Object attachment) {
 try {
 serverChannel.close(); #5
 } catch (IOException e) {
 // ingnore on close
 } finally {
 latch.countDown();
 }
 }
 });
 try {
 latch.await();
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }

 private final class EchoCompletionHandler implements
CompletionHandler<Integer, ByteBuffer> {
 private final AsynchronousSocketChannel channel;
 EchoCompletionHandler(AsynchronousSocketChannel channel) {
 this.channel = channel;
 }

 @Override
 public void completed(Integer result, ByteBuffer buffer) {
 buffer.flip();
 channel.write(buffer, buffer, new CompletionHandler<Integer,
ByteBuffer>() { #6
 @Override
 public void completed(Integer result, ByteBuffer buffer) {
 if (buffer.hasRemaining()) {
 channel.write(buffer, buffer, this); #7
 } else {
 buffer.compact();
 channel.read(buffer, buffer,
 EchoCompletionHandler.this); #8
 }
 }

 @Override
 public void failed(Throwable exc, ByteBuffer attachment) {
 try {
 channel.close();
 } catch (IOException e) {
 // ingnore on close
 }
 }
 });
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

15

http://www.manning-sandbox.com/forum.jspa?forumID=857

 @Override
 public void failed(Throwable exc, ByteBuffer attachment) {
 try {
 channel.close();
 } catch (IOException e) {
 // ingnore on close
 }
 }
 }
}

#1Bind Server to port
#2 Start to accept new Client connections. Once one is accepted the CompletionHandler will get called.
#3 Again accept new Client connections
#4 Trigger a read operation on the Channel, the given CompletionHandler will be notified once
something was read
#5 Close the socket on error
#6 Trigger a write operation on the Channel, the given CompletionHandler will be notified once
something was written
#7 Trigger again a write operation if something is left in the ByteBuffer
#8 Trigger a read operation on the Channel, the given CompletionHandler will be notified once
something was read

At first glance, it may look like more code than what you had when using the previous NIO
implementation. But notice that NIO.2 handles threading and the creation of the so-called
event loop for you. This approach simplifies the code needed to build a multithreaded NIO
application, even though it may not seem to be the case in this example. As the complexity of
the application increases, the gains become more evident because you�ll be producing cleaner
code.

In the next section, we�ll look at some known problems that exist in the JDK�s NIO
implementation.

1.4 NIO problems and how Netty comes to the rescue
In this section, we�ll look at some problems and limitations of the Java NIO APIs and how Netty
addresses these issues. Having the NIO packages of the JDK is a great step in the right
direction, but users are limited in how they can use them. These issues are often the result of
design choices that were made in the past and aren�t easy to change now, others are defects.

1.4.1 Cross-platform and compatibility issues
NIO is low level and depends on how the operating system (OS) handles IO. So fulfilling the
requirement of having a unified API exposed in Java, which works and behaves the same on all
OSs, isn�t trivial.

When using NIO you often find that your code works fine on Linux, for example, but has
problems on Windows. My general advice, even if you�re not using NIO, but it�s more important
if you are, is to test on all the OSs you want to support or use. Even if all the tests pass on
your Linux workstation, be sure to verify it on the other OSs. If you don�t verify, prepare to
have fun later.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

16

http://www.manning-sandbox.com/forum.jspa?forumID=857

Ideal as NIO.2 may seem, it�s only supported in Java 7, and if your application runs on Java
6, you may not be able to use it. Also, at the time of writing, there is no NIO.2 API for
datagram channels (for UDP applications), so its usage is limited to TCP applications only.

Netty addresses this problem by providing a unified API, which allows the same semantics
to work seamlessly on either Java 6 or 7. You don�t have to worry about the underlying
version, and you benefit from a simple and consistent API.

1.4.2 Extending ByteBuffer ... or not
As you saw previously, ByteBuffer is used as data container. Unfortunately, the JDK doesn�t
contain a ByteBuffer implementation that allows wrapping an array of ByteBuffer
instances. This functionality is useful if you want to minimize memory copies. If you �rethinking
I�ll implement it myself, don�t waste your time; ByteBuffer has a private constructor, so it
isn�t possible to extend it.

Netty provides its own ByteBuffer implementation, which gets around this limitation and
goes further by providing several other means of constructing, using, and manipulating a
ByteBuffer all with a simpler API.

1.4.3 Scattering and gathering may leak
Many channel implementations support scattering and gathering. This feature allows writing to
or reading from many ByteBuffer instances at the same time with better performance. Here
the kernel/OS handles how these are written/read, which often gives you the best performance
because the kernel/OS, being closer to the hardware, knows how to do it in the most efficient
way.

Scattering/gathering is often used if you want to split data in different ByteBuffer
instances to handle each buffer separately. For example, you may want to have the header in
one ByteBuffer and the body in another.

Figure 1.4 shows how a scattering read is performed. You pass an array of ByteBuffer
instances to the ScatteringByteChannel and the data gets scattered from the channel to
the buffers.

Figure 1.4 A scattering read from a channel

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

17

http://www.manning-sandbox.com/forum.jspa?forumID=857

Gathering writes work in a similar way, but the data is written to the channel. You pass an
array of ByteBuffer instances to the GatheringByteChannel.write() method and the
data is gathered from the buffers to the channel.

Figure 1.5 illustrates the gathering write process.

Figure 1.5 A gathering write to a channel

Unfortunately, this feature was broken in Java until a late Java 6 update and Java 7, and
results in a memory leak, which causes an OutOfMemoryError. You need to be careful when
you use scattering/gathering and be sure that you use the correct Java version on your
production system.

You may ask, �Why not upgrade Java ?� I agree that this fixes the problem, but in reality
it�s often not feasible to upgrade, as your company may have restrictions on what version may
be deployed on all the systems. Changing this may be painful or, in fact, not possible.

1.4.4 Squashing the famous epoll bug
On Linux-like OSs the selector makes use of the epoll- IO event notification facility. This is a
high-performance technique in which the OS works asynchronously with the networking stack.
Unfortunately, even today the �famous� epoll- bug can lead to an �invalid� state in the
selector, resulting in 100% CPU-usage and spinning. The only way to recover is to recycle the
old selector and transfer the previously registered Channel instances to the newly created
Selector.

What happens here is that the Selector.select() method stops to block and returns
immediately�even if there are no selected SelectionKeys present. This is against the
contract, which is in the Javadocs of the Selector.select() method:
Selector.select() must not unblock if nothing is selected.

NOTE For more details on the problem, see https://github.com/netty/netty/issues/327.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

18

https://github.com/netty/netty/issues/327
http://www.manning-sandbox.com/forum.jspa?forumID=857

The range of solutions to this epoll- problem is limited, but Netty attempts to automatically
detect and prevent it. The following listing is an example of the epoll- bug.

Listing 1.8 Epoll- bug in action
...
 while (true) {
 int selected = selector.select(); #1
 Set<SelectedKeys> readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator(); #2
 while (iterator.hasNext()) { #3
 ...
 ... #4
 }
}
...

#1Returns immediately and returns 0 as nothing was selected
#2 Obtains all SelectedKeys, Iterator is empty as nothing was selected
#3 Loops over SelectedKeys in Iterator, but never enters this block as nothing was selected
#4 Does the work in here

The effect of this code is that the while loop eats CPU:

...
 while (true) {

}
...

The value will never be false, and the code keeps your CPU spinning and eats resources. This
can have some undesirable side effects as it can consume all of your CPU, preventing any other
CPU-bound work.

Figure 1.4 shows a Java process that takes up all of your CPU.

Figure 1.4 The top utility running in a Terminal window shows that java eats 100% CPU

#1The java command with the PID 58552 eats 102.2 % CPU

These are only a few of the possible problems you may see while using non-blocking IO.
Unfortunately, even after years of development in this area, issues still need to be resolved;
thankfully, Netty addresses them for you.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

19

http://www.manning-sandbox.com/forum.jspa?forumID=857

1.5 Summary
This chapter provided an overview of Netty�s features, design and benefits. I discussed the
difference between blocking and non-blocking processing to give you a fundamental
understanding of the reasons to use a non-blocking framework.

You learned how to use the JDK API to write network code in both blocking and non-
blocking modes. This included the new non-blocking API, which comes with JDK 7. After seeing
the NIO APIs in action, it was also important to understand some of the known issues that you
may run into. In fact, this is why so many people use Netty: to take care of workarounds and
other JVM quirks.

In the next chapter, you�ll learn the basics of the Netty API and programming model, and,
finally, use Netty to write some useful code.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

20

http://www.manning-sandbox.com/forum.jspa?forumID=857

2
Your first Netty application

This chapter covers

 Getting the latest version of Netty

 Setting up the required environment to build and run the examples

 Creating a Netty client and server

 Intercepting and handling errors

 Building and running the Netty client and server

This chapter prepares you for the rest of this book by providing you with a gentle introduction
to core Netty concepts. One such concept is learning how Netty allows you to intercept and
handle exceptions, which is crucial when you�re getting started and need help debugging
problems. The chapter also introduces you to other core concepts, such as client and server
bootstrapping and separation of concerns via channel handlers. To provide a foundation to
build on as you progress through future chapters, you�ll set up a client and server to
communicate with each other using Netty. First, though, you need to set up your development
environment.

2.1 Setting up the development environment
To set up a development environment, complete the following steps:

1. Install Java to compile and run the listed examples.

Your operating system may come with a JDK; if so, you can skip this step. If you need to
install Java, the latest version is available at http://java.com. Make sure you install the
JDK (and not the JRE), as a JDK is needed for compiling the code. If you need the
installation documentation, please refer to the Java website.

2. Download and install Apache Maven.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

21

http://java.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

Maven is a dependency management tool, which makes dependency tracking easier.
Download the archive from its project website at http://maven.apache.org. At the time
of this book�s publication, the most recent version is 3.0.5.

Make sure you download the correct archive for your operating system. For Windows,
this is the .zip archive, for UNIX-like operating systems (such as Linux and Mac OSX),
download the tar.bz2 archive.

After the file downloads, extract the archive to a folder of your choice, following the
procedures specific to your operating system.

NOTE The Netty project uses Maven, and in keeping with this, all of our examples use
Maven as well.

The following listing shows the Maven files that may be included on an OSX system.

Listing 2.1 Unpacking Maven archive
Normans-MacBook-Pro:Apps norman$ tar xfvz ~/Downloads/apache-maven-3.0.5-
bin.tar.gz
Normans-MacBook-Pro:Apps norman$ tar xfvz ~/Downloads/apache-maven-3.0.5-
bin.tar.gz
x apache-maven-3.0.5/boot/plexus-classworlds-2.4.jar
x apache-maven-3.0.5/lib/maven-embedder-3.0.5.jar
x apache-maven-3.0.5/lib/maven-settings-3.0.5.jar
x apache-maven-3.0.5/lib/plexus-utils-2.0.6.jar
x apache-maven-3.0.5/lib/maven-core-3.0.5.jar
x apache-maven-3.0.5/lib/maven-model-3.0.5.jar
x apache-maven-3.0.5/lib/maven-settings-builder-3.0.5.jar
x apache-maven-3.0.5/lib/plexus-interpolation-1.14.jar
x apache-maven-3.0.5/lib/plexus-component-annotations-1.5.5.jar
x apache-maven-3.0.5/lib/plexus-sec-dispatcher-1.3.jar
x apache-maven-3.0.5/lib/plexus-cipher-1.7.jar
x apache-maven-3.0.5/lib/maven-repository-metadata-3.0.5.jar
x apache-maven-3.0.5/lib/maven-artifact-3.0.5.jar
x apache-maven-3.0.5/lib/maven-plugin-api-3.0.5.jar
...
...
...

 x apache-maven-3.0.5/lib/ext/README.txt
Normans-MacBook-Pro:Apps norman$

After you unpack the archive, you may want to add it to your path so that you can type mvn to
execute Maven. Otherwise, you�ll need to use the full path to the executable every time you
want to run it.

Again, how this is done varies depending on your operating system.

 For UNIX-like operating systems, you usually configure this in a .profile or .bashrc file:

Normans-MacBook-Pro:Apps norman$ vim ~/.profile
Inside the .profile file
export PATH=$PATH:/Users/norman/Apps/apache-maven-3.0.5/bin

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

22

http://maven.apache.org
http://www.manning-sandbox.com/forum.jspa?forumID=857

 Save the changes with the :wq command. On Windows, set the path through the
System Preferences pane.

Maven uses its Standard Directory Layout for organizing projects. You can find out more
about this layout on the Maven website. I�ll focus only on the important directories for the
examples here. Table 2.1 shows the main directories you�ll be working with in your Maven
projects.

Table 2.1 Trimmed-down Maven Standard Directory Layout

Folder Description

/{$projectname}
Root folder of the project

/{$projectname}/src/main/java
Application source

Maven uses an instruction file named pom.xml, as shown in the following listing, to specify how
a project is built. Place pom.xml in the root folder of the project.

Listing 2.2 Maven pom.xml
<?xml version="1.0" encoding="ISO-8859-15"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.nettyinaction</groupId>
 <artifactId>netty-in-action</artifactId>
 <name>netty-in-action</name>
 <version>0.1-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <optimize>true</optimize>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

23

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http://www.manning-sandbox.com/forum.jspa?forumID=857

 <version>4.0.0.Final</version>
 </dependency>
 </dependencies>
</project>

You should end up with a directory structure having a pom.xml file and an src/main/java
directory. In pom.xml, each dependency tag is a container for a library that Maven
automatically includes. Netty is the only one listed in this example, but you can have as many
as you need.

2.2 Netty client and server overview
The goal of this section is to guide you through building a complete Netty client and server.
Typically, you may only be interested in writing a server, such as an HTTP server where the
client would be a browser. For this example, however, you�ll get a much clearer view of the
entire lifecycle if you implement both the client and server.

The big-picture view of a Netty application looks like figure 2.1.

Figure 2.1 Application overview

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

24

http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 Client that connects to server
#2 Established connection to send/receive data
#3 Server that handles all connected clients

One thing that should be clear from looking at figure 2.1 is that the Netty server you�ll write,
automatically handles several concurrent clients. In theory, the only limits are the resources
available on the system and any JDK limitations.

To make it easier to understand, imagine being in a valley or on a mountain and shouting
something, then hearing what you shouted echoed back to you. In this scenario, you�re the
client and the mountain is the server. By going to the mountain, you make a connection. The
act of shouting is analogous to a Netty client sending data to the server. Hearing your voice
echoed back is the same as the Netty server returning the same data you sent. After you leave
the mountain, you�re disconnected, but you can return to reconnect to the server and send
more data.

Although it�s not typically the case for the same data to be echoed back to a client, this to
and fro between the client and server is common. Examples later in the chapter will repeatedly
demonstrate this as they become increasingly complex.

The next few sections walk you through the process of creating this echo client and server
with Netty.

2.3 Writing an Echo server
Writing a Netty server consists of two main parts:

 Bootstrapping�Configure server features, such as the threading and port.

 Implementing the server handler�Build out the component that contains the business
logic, which determines what should happen when a connection is made and data is
received.

2.3.1 Bootstrapping the server
You bootstrap a server by creating an instance of the ServerBootstrap class. This instance
is then configured, as shown in the following listing, to set options, such as the port, the
threading model/event loop, and the server handler to handle the business logic (for this
example, it echoes data back, but it can be quite complex).

Listing 2.3 Main class for the server
 public class EchoServer {

 private final int port;
 public EchoServer(int port) {
 this.port = port;
 }

 public void start() throws Exception {
 EventLoopGroup group = new NioEventLoopGroup();
 try {
 ServerBootstrap b = new ServerBootstrap(); #1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

25

http://www.manning-sandbox.com/forum.jspa?forumID=857

 b.group(group) #2
 .channel(NioServerSocketChannel.class) #2
 .localAddress(new InetSocketAddress(port)) #2
 .childHandler(new ChannelInitializer<SocketChannel>() { #3
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(
 new EchoServerHandler()); #4
 }
 });

 ChannelFuture f = b.bind().sync(); #5
 System.out.println(EchoServer.class.getName() + #6
 “ started and listen on “ + f.channel().localAddress());#7
 f.channel().closeFuture().sync(); #8
 } finally { #9
 group.shutdownGracefully().sync(); #10
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length !=1) {
 System.err.println(
 “Usage: “ + EchoServer.class.getSimpleName() +
 “ <port>“);
 }
 int port = Integer.parseInt(args[0]);
 new EchoServer(port).start();
 }
 }

#1 Bootstraps the server
#2 Specifies NIO transport, local socket address
#3 Adds handler to channel pipeline
#4 Binds server, waits for server to close, and releases resources

This example may seem trivial, but it does everything the vanilla Java examples did in chapter
1 and more. To bootstrap the server, you first create a ServerBootstrap instance (#1).
Because you�re using the NIO transport, you specify the NioEventLoopGroup to accept new
connections and handle accepted connections, specify the NioServerSocketChannel as the
channel type, and you set the InetSocketAddress to which the server should bind so that it
accepts new connections (#2).

Next, you specify the ChannelHandler to call when a connection is accepted, which
creates a child channel (#3). A special type named ChannelInitializer is used here.

Even though the NIO examples in chapter 1 are scalable, they�re prone to other issues.
Threading, for example, isn�t easy to get right, but Netty�s design and abstraction encapsulates
most of the threading work you�d need to do, through the use of EventLoopGroup,
SocketChannel, and ChannelInitializer, each of which will be discussed in more detail
in a later chapter.

The ChannelPipeline holds all of the different ChannelHandlers of a channel, so you
add the previously written EchoServerHandler to the channel�s ChannelPipeline (#4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

26

http://www.manning-sandbox.com/forum.jspa?forumID=857

At (#5), you bind the server and then wait until the bind completes, the call to the �sync()�
method will cause this to block until the server is bound. At #7 the application will wait until
the server�s channel closes (because we call sync() on the channel�s close future). You can now
shutdown the EventLoopGroup and release all resources, including all created threads(#10).

NIO is used for this example because it�s currently the most used transport , and it�s likely
you�ll use it too, But you can choose a different transport implementation. For example, if this
example used the OIO transport, you�d specify OioServerSocketChannel. Netty�s
architecture, including what transports are, will be covered later.

Let�s highlight the important things here:

 You create a ServerBootstrap instance to bootstrap the server and bind it later.

 You create and assign the NioEventLoopGroup instances to handle event processing,
such as accepting new connections, receiving data, writing data, and so on.

 You specify the local InetSocketAddress to which the server binds.

 You set up a childHandler that executes for every accepted connection.

 After everything is set up, you call the ServerBootstrap.bind() method to bind the
server.

2.3.2 Implementing the server/business logic
Netty uses the concept of futures and callbacks, discussed previously, coupled with a design
that allows you to hook in and react to different event types. This is discussed in detail later,
but for now let�s focus on the data that�s received. To do this, your channel handler must
extend the ChannelInboundHandlerAdapter class and override the messageReceived
method. This method is called every time messages are received, which in this case are bytes.
This is where you place your logic to echo it back to the client, as shown in the following listing.

Listing 2.4 Channel handler for the server
@Sharable #1
public class EchoServerHandler extends
 ChannelInboundHandlerAdapter {

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 System.out.println(“Server received: “ + msg);

 ctx.write(msg) #2
 }

 @Override
 public void channelReadComplete(ChannelHandlerContext ctx) {

 ctx.writeAndFlush(Unpooled.EMPTY_BUFFER)
 .addListener(ChannelFutureListener.CLOSE); #3

 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

27

http://www.manning-sandbox.com/forum.jspa?forumID=857

 Throwable cause) {
 cause.printStracktrace(); #4
 ctx.close(); #5
 }
}

#1 Annotate with @Sharable to share between channels
#2 Write the received messages back . Be aware that this will not �flush� the messages to the remote
peer yet.
#3 Flush all previous written messages (that are pending) to the remote peer, and close the channel
after the operation is complete.
#4 Log exception
#5 Close channel on exception

Netty uses channel handlers to allow a greater separation of concerns, making it easy to add,
update, or remove business logic as they evolve. The handler is straightforward and each of its
methods can be overridden to �hook� into a part of the data lifecycle, but only the
channelRead method is required to be overridden.

2.3.3 Intercepting exceptions
In addition to overriding the channelRead method, you may notice that also the
exceptionCaught method was overriden. This is done to react to exceptions, or to any
Throwable subtype. In this case, I log it and close the connection to the client, as the
connection may be in an unknown state. Often this is what you do, but there may be scenarios
where it�s possible to recover from an error, so it�s up to you to come up with a smart
implementation. The important thing to note is that you should have at least one
ChannelHandler that implements this method and so provides a way to handle all sorts of
errors.

Netty's approach to intercepting exceptions makes it easier to handle errors that occur on
different threads. Exceptions that were impossible to catch from separate threads are all fed
through the same simple, centralized API.

There are many other ChannelHandler subtypes and implementations that you should be
aware of if you plan to implement a real-world application or write a framework that uses Netty
internally, but I�ll talk about this later. For now, remember that ChannelHandler
implementations will be called for different types of events and that you can implement or
extend them to hook into the event lifecycle.

2.4 Writing an echo client
Now that all of the code is in place for the server, let�s create a client to use it.

The client�s role includes the following tasks:

 Connect to the server

 Writes data

 Waits for and receives the exact same data back from the server.

 Closes the connection

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

28

http://www.manning-sandbox.com/forum.jspa?forumID=857

With this in mind, let�s write the actual logic as you did before when you implemented the
server.

2.4.1 Bootstrapping the client
As shown in the following listing, bootstrapping a client is similar to bootstrapping a server. The
client bootstrap, however, accepts both a host and a port to which the client connects, as
opposed to only the port.

Listing 2.5 Main class for the client
public class EchoClient {

 private final String host;
 private final int port;

 public EchoClient(String host, int port) {
 this.host = host;
 this.port = port;
 }

 public void start() throws Exception {
 EventLoopGroup group = new NioEventLoopGroup();
 try {

Bootstrap b = new Bootstrap(); #1
 b.group(group) #2
 .channel(NioSocketChannel.class) #3
 .remoteAddress(new InetSocketAddress(host, port)) #4
 .handler(new ChannelInitializer<SocketChannel>() { #5
 @Override
 public void initChannel(SocketChannel ch)
throws Exception {
 ch.pipeline().addLast(
 new EchoClientHandler()); #6
 }
 });

 ChannelFuture f = b.connect().sync(); #7

 f.channel().closeFuture().sync(); #8
 } finally {
 group.shutdownGracefully().sync(); #9
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println(
 "Usage: " + EchoClient.class.getSimpleName() +
 " <host> <port>");
 return;
 }

 // Parse options.
 final String host = args[0];
 final int port = Integer.parseInt(args[1]);

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

29

http://www.manning-sandbox.com/forum.jspa?forumID=857

 new EchoClient(host, port).start();
 }
}

#1 Create bootstrap for client
#2 Specify EventLoopGroup to handle client events. NioEventLoopGroup is used, as the NIO-Transport
should be used
#3 Specify channel type; use correct one for NIO-Transport
#4 Set InetSocketAddress to which client connects
#5 Specify ChannelHandler, using ChannelInitializer, called once connection established and channel
created
#6 Add EchoClientHandler to ChannelPipeline that belongs to channel. ChannelPipeline holds all
ChannelHandlers of channel
#7 Connect client to remote peer; wait until sync() completes connect completes
#8 Wait until ClientChannel closes. This will block.
#9 Shut down bootstrap and thread pools; release all resources

As before, the NIO transport is used here. It�s worth mentioning that it doesn�t matter what
transport you use; you can use different transports in the client and server at the same time.
It�s possible to use the NIO transport on the server side and the OIO Transport on the client
side. You�ll learn more about which transport should be used in specific scenarios in chapter 4.

Let�s highlight the important points of this section:

 A Bootstrap instance is created to bootstrap the client.

 The NioEventLoopGroup instance is created and assigned to handle the event
processing, such as creating new connections, receiving data, writing data, and so on.

 The remote InetSocketAddress to which the client will connect is specified.

 A handler is set that will be executed once the connection is established.

 After everything is set up, the ServerBootstrap.connect() method is called to
connect to the remote peer (the echo-server in our case).

2.4.2 Implementing the client logic
I�ll keep this example simple, because any class used that hasn�t yet been covered will be
discussed in more detail in upcoming chapters.

As before, I write my own SimpleChannelInboundHandlerAdapter implementation to
handle all the needed tasks, as shown in listing 2.6. This is done by overriding three methods
that handle events that are of interest to us:

 channelActive()�Called after the connection to the server is established

 channelRead0()�Called after you receive data from the server

 exceptionCaught()�Called if any exception was raised during processing

Listing 2.6 Channel handler for the client
@Sharable #1
public class EchoClientHandler extends
 SimpleChannelInboundHandlerAdapter<ByteBuf> {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

30

http://www.manning-sandbox.com/forum.jspa?forumID=857

 @Override
 public void channelActive(ChannelHandlerContext ctx) {
 ctx.write(Unpooled.copiedBuffer(“Netty rocks!“,
 CharsetUtil.UTF_8); #2
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ByteBuf in) {
 System.out.println(“Client received: “ + ByteBufUtil
 .hexDump(in.readBytes(in.readableBytes()))); #4
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx, #5
Throwable cause) {
 cause.printStracktrace();

ctx.close();
 }
}

#1 Annotate with @Sharable as it can be shared between channels
#2 Write message now that channel is connected
#3 Log received message as hexdump
#4 Log exception and close channel

As explained previously, you override three methods in this listing. All of these methods are
needed to implement the scenario for which you�re writing the application.

The channelActive() method is called once the connection is established. The logic there
is simple. Once the connection is established, a sequence of bytes is sent to the server. The
contents of the message doesn't matter; I used the encoded string of �Netty rocks!�
Overriding this method ensures that something is written to the server as soon as possible.

Next, override the channelRead0() method. The method is called once data is received.
Note that the bytes may be fragmented, which means that if the server writes 5 bytes it�s not
guaranteed that all 5 bytes will be received at once. For 5 bytes, the channelRead0()method
could be called twice, for example. The first time it may be called with a ByteBuf that holds 3
bytes and the second time with a ByteBuf that holds 2 bytes. The only guarantee is that the
bytes will be received in the same order as they�re sent. But this is only true for TCP or other
stream-orientated protocols.

The third method to override is exceptionCaught(). Use the same method as with the
EchoServerHandler (listing 2.3). The Throwable is logged and the channel is closed, which
means the connection to the server is closed.

You may ask yourself why we now used SimpleChannelInboundHandler and not
ChannelInboundHandlerAdapter as it was used in the EchoServerHandler. The main reason
for this is that with ChannelInboundHandlerAdapter you are responsible to �release�
resources after you handled the received message. In case of ByteBuf this will be call
ByteBuf.release(). With SimpleChannelInboundHandler this is not the case as

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

31

http://www.manning-sandbox.com/forum.jspa?forumID=857

it will release the message once the channelRead0(...) method completes. This is
done by Netty to handle all messages that are implement ReferenceCounted.

But why not do the same in the EchoServerHandler? The reason for this is that we
want to echo back the message, which means we can not release it yet as the write
operation may completes after channelRead(...) returns (remember write is
asynchronous). Once the write completes Netty will automatically release the message.

This is everything you need for the client side. Now it�s time to test your code and see it in
action.

2.5 Compiling and running the echo client and server
In this section, I�ll go through the various steps needed to run your echo client and server. In
large, complex projects, you often need to use a build tool, and as mentioned previously, all
the examples in this book use Maven. You can compile the echo client and server with any
other build tool (or even with the javac command). The most important thing is that the Netty
jar needs to be on the class path because the code depends on it.

To compile the example, you have to do some preparation first, as the maven has it�s own
dependencies. The next section guides you through that process.

2.5.1 Compiling the server and client
Once everything is in place, it�s easy to compile your application execute the mvn command
from the root directory of the project (where pom.xml exists). The following listing shows the
command output.

Listing 2.7 Compile the source
Normans-MacBook-Pro:netty-in-action norman$ mvn clean package
[INFO] Scanning for projects...
[INFO]
[INFO] --
--
[INFO] Building netty-in-action 0.1-SNAPSHOT
[INFO] --
--
[INFO]
[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ netty-in-action -
--
[INFO] Deleting /Users/norman/Documents/workspace/netty-in-action/target
[INFO]
[INFO] --- maven-resources-plugin:2.4.3:resources (default-resources) @
netty-in-action ---
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered
resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory
/Users/norman/Documents/workspace/netty-in-action/src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ netty-in-

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

32

http://www.manning-sandbox.com/forum.jspa?forumID=857

action ---
[INFO] Compiling 4 source files to /Users/norman/Documents/workspace/netty-
in-action/target/classes
[INFO]
[INFO] --- maven-resources-plugin:2.4.3:testResources (default-testResources)
@ netty-in-action ---
[INFO] skip non existing resourceDirectory
/Users/norman/Documents/workspace/netty-in-action/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile) @
netty-in-action ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.7.2:test (default-test) @ netty-in-action

[INFO] No tests to run.
...

 T E S T S

There are no tests to run.

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0 #1

[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: /Users/norman/Documents/workspace/netty-in-
action/target/netty-in-action-0.1-SNAPSHOT.jar #2
[INFO] --
--
[INFO] BUILD SUCCESS #3
[INFO] --
--
[INFO] Total time: 4.344s
[INFO] Finished at: Mon Oct 22 09:49:28 CEST 2012
[INFO] Final Memory: 13M/118M
[INFO] --
--
Normans-MacBook-Pro:netty-in-action norman$

#1 Unit tests report ran, failed, errors, or skipped
#2 Java jar file created from echo client and server code and placed in location listed
#3 Compilation successful; errors would report "build failed"

Maven downloads all the libraries your code needs. In this case, only Netty is required, but for
bigger projects there may be more dependencies.

After the process completes you�ll have your final JAR file, which you�ll run in the next
section.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

33

http://www.manning-sandbox.com/forum.jspa?forumID=857

2.5.2 Running the server and client
So everything is compiled now and ready to be used. This is done via the java command.
You�ll need at least two console windows. The first console runs the server; the second runs the
client.

The following listing shows how the server is started. Note that I include the Netty jar and
the generated jar (which holds your compiled code) with the classpath. This is needed or you�d
get a ClassNotFoundException.

Listing 2.8 Starting the server
Normans-MacBook-Pro:netty-in-action norman$ java -cp
~/.m2/repository/io/netty/netty-all/4.0.0.Final/netty-all-4.0.0.
Final.jar:target/netty-in-action-0.1-SNAPSHOT.jar
com.manning.nettyinaction.chapter2.EchoServer 8080

com.manning.nettyinaction.chapter2.EchoServer started and listen on
/0:0:0:0:0:0:0:0:8080

To stop the server, press Ctrl-C.
Now the server is started and ready to accept data, which it processes and echoes back to

the client. To test this, I�ll start up the client, which does the following:

 Connects to the server.

 Writes data to the server.

 Waits to receive data.

 Shuts down the server .

Again, use the java executable to start up the client, with the classpath set up correctly as
shown in the following listing.

Listing 2.9 Starting the client
Normans-MacBook-Pro:netty-in-action norman$ java -cp
~/.m2/repository/io/netty/netty-all/4.0.0.Final/netty-all-
4.0.0.Final.jar:target/netty-in-action-0.1-SNAPSHOT.jar
com.manning.nettyinaction.chapter2.EchoClient 127.0.0.1 8080

Client received: 4e6574747920726f636b7321

Note that the client starts up and prints out a single log statement to STDOUT. This shows the
HEX of the received data. After the HEX prints, it closes the connection and terminates itself
without any further interaction.

Every time you start the client, you�ll see one log statement in the console that the server is
running in:

Server received: 4e6574747920726f636b7321

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

34

http://www.manning-sandbox.com/forum.jspa?forumID=857

As you can see, the logged HEX matches what was logged on the client, which verifies that
the application works as expected; the server writes exactly the same data to the client as it
received.

The last scenario to test is what happens if the server isn�t started but a client tries to
connect to the server. First, stop the server with the Ctrl-C shortcut, as described previously.
Once you�re sure it�s not running anymore, start the client again. The following listing shows
the output of the client when the server is no longer running.

Listing 2.10 Exception in client
Normans-MacBook-Pro:netty-in-action norman$ java -cp
~/.m2/repository/io/netty/netty-all/4.0.0.Final/netty-all-
4.0.0.Final.jar:target/netty-in-action-0.1-SNAPSHOT.jar
com.manning.nettyinaction.chapter2.EchoClient 127.0.0.1 8080
java.net.ConnectException: Connection refused
 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
 at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:692)
 at
io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel
.java:177) #1
 at
io.netty.channel.socket.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnec
t(AbstractNioChannel.java:201)
 at
io.netty.channel.socket.nio.NioEventLoop.processSelectedKeys(NioEventLoop.jav
a:284)
 at io.netty.channel.socket.nio.NioEventLoop.run(NioEventLoop.java:211)
 at
io.netty.channel.SingleThreadEventExecutor$1.run(SingleThreadEventExecutor.ja
va:80)
 at java.lang.Thread.run(Thread.java:722)
Exception in thread "main" io.netty.channel.ChannelException:
java.net.ConnectException: Connection refused #2
 at
io.netty.channel.DefaultChannelFuture.rethrowIfFailed(DefaultChannelFuture.ja
va:226)
 at
io.netty.channel.DefaultChannelFuture.sync(DefaultChannelFuture.java:175)
 at
com.manning.nettyinaction.chapter2.EchoClient.start(EchoClient.java:37)
 at #3
com.manning.nettyinaction.chapter2.EchoClient.main(EchoClient.java:56)
Caused by: java.net.ConnectException: Connection refused
 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
 at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:692)
 at
io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel
.java:177)
 at
io.netty.channel.socket.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnec
t(AbstractNioChannel.java:201)
 at
io.netty.channel.socket.nio.NioEventLoop.processSelectedKeys(NioEventLoop.jav
a:284)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

35

http://www.manning-sandbox.com/forum.jspa?forumID=857

 at io.netty.channel.socket.nio.NioEventLoop.run(NioEventLoop.java:211)
 at
io.netty.channel.SingleThreadEventExecutor$1.run(SingleThreadEventExecutor.ja
va:80)
 at java.lang.Thread.run(Thread.java:722)

#1 Client connect fails; even on different thread Netty propagates exception
#2 Exception traceable back to client example
#3 Specific exception propagated and not wrapped. ConnectException could be handled differently in
client handler to support features such as automatic reconnection

What happened? The client tried to connect to the server, which it expected to run on
127.0.0.1:8080. This failed (as expected) because the server was stopped previously,
triggering a java.net.ConnectException on the client side. The exception then triggered
the exceptionCaught(…) method of the EchoClientHandler. This prints out the stack
trace and closes the channel, which is exactly how it was implemented in listing 2.3.

You�ve now essentially built a client and server which can handle concurrency in a simpler
way. This setup is capable of scaling to several thousand concurrent users and handles far
more messages per second than a vanilla Java can handle. In later chapters, you�ll� see and
appreciate why and how Netty�s approach makes scaling and threading easier. You�ll also see
that by allowing for a separation of concerns and hooking into the data lifecycle, Netty creates
an extensible environment in which it�s easy to implement improvements and changes as the
business requirements change.

2.6 Summary
In this chapter you got an introduction to Netty by implementing a basic server and client. You
learned how to compile the code that is used for examples in this book and how to get and
install all the tools needed. These tools are used later in the more advanced examples included
in this book.

This chapter also provided you with a simple application that shows how applications are
broken down when using Netty to develop them. Finally, you learned how to intercept
exceptions and handle them, both on the client and the server.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

36

http://www.manning-sandbox.com/forum.jspa?forumID=857

3
Netty from the ground up

In this chapter we�re going to take a 10K feet view of Netty. Doing so will help you understand
how Netty�s components fit together and how they are useful to you.

There are some things without which an application would never work (there are others but
in terms of Netty these are perhaps the most common/important ones you�ll come across).

 Bootstrap or ServerBootstrap

 EventLoop

 EventLoopGroup

 ChannelPipeline

 Channel

 Future or ChannelFuture

 ChannelInitializer

 ChannelHandler

That is the purpose of this chapter, to introduce all of these concepts in preparation for the
rest of the book. Instead of explaining what these are separately we�ll describe how they all
work together in order to help you build a mental picture of how the pieces fit in.

3.1 Netty Crash Course
Before we begin, it�ll be useful if you get a rough idea of the general structure of a Netty
application (Both client and servers have a similar structure).

A Netty application begins with one of the Bootstrap classes, a Bootstrap is a construct
Netty provides that makes it easy for you to configure how Netty should setup or �bootstrap�
the application.

In order to allow multiple protocols and various ways of processing data, Netty has what
are called handlers. Handlers, as their names suggest are designed to handle a specific �event�

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

37

http://www.manning-sandbox.com/forum.jspa?forumID=857

or sets of events in Netty. An event is a very generic way of describing this because you can
have a handler, which converts an object to bytes or visa-versa or you can have a handler,
which is notified about Exceptions that are thrown during processing and handle them.

One very common type you�ll be writing is an implementation of the
ChannelInboundHandler. The ChannelInboundHandler receives messages which you
can process and decide what to do with it. You may also write/flush data out from inside an
ChannelInboundHandler when your application needs to provide a response. In other
words, the business logic of your application typically lives in a ChannelInboundHandler.

Business logic

The business logic represent this part of your program which does actual some work with the
data that is received via the network after it was transformed to some format which is well
understood. This could be for example be some kind of storing it into a database or something
similar. What exactly it does depends completly on the application you are writiing, but
represent a �core part� of your application.

When Netty connects a client or binds a server it needs to know how to process messages
that are sent or received. This is also done via different types of handlers but to configure
these handlers Netty has what is known as an ChannelInitializer. The role of the
ChannelInitializer is to add ChannelHandler implementations to what�s called the
ChannelPipeline. As you send and receive messages, these handlers will determine what
happens to the messages. An ChannelInitializer is also itself a ChannelHandler which
automatically removes itself from the ChannelPipeline after it has added the other
handlers.

All Netty applications are based on what is called a ChannelPipeline. The
ChannelPipeline is closely related to what�s known as the EventLoop and
EventLoopGroup because all three of them are related to events or event handling.

An EventLoops purpose in the application is to process IO operations for a Channel. A
single EventLoop will typically handle events for multiple Channels. The EventLoopGroup
itself may contain more then one EventLoop and can be used to obtain an EventLoop.

A Channel is a representation of a socket connection or some component capable of
performing IO operations, hence why it is managed by the EventLoop whose job it is to
process IO.

All IO operations in Netty are performed asynchronously. So when you connect to a host for
example, this is done asynchronously by default. The same is true when you write/send a
message. This means the operation may not be performed directly but picked up later for
execution. Because of this you can�t know if an operation was successful or not after it returns,
but need to be able to check later for success or have some kind of ways to register a listener
which is notified. To rectify this, Netty uses Futures and ChannelFutures. This future can be

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

38

http://www.manning-sandbox.com/forum.jspa?forumID=857

used to register a listener, which will be notified when an operation has either failed or
completed successfully.

ChannelFuture � what�s that ?

Like stated before all IO operations are asynchronous in Netty and thus may complete later
and not directly when you execute a method. This is where ChannelFuture comes into play. A
ChannelFuture is a special java.util.concurrent.Future, which allos you to register
ChannnelFutureListeners tot he ChannelFuture. Those ChannelFutureListeners will get notified
once the operation (which was triggered by the method call) is complete.

So basically a ChannelFuture is a placeholder for a result of an operation that is executed
in the future. When exactly it is executed depends on many facts and is not easy to �say�.
The only thing you can be sure of is that it will be executed and all operations that return a
ChannelFuture and belong to the same Channel will be executed in the correct order, which
is the same order as you executed the methods.

As you go through the rest of this chapter and this book you�ll find these concepts are
mentioned very often. But they�re not overly complex so if you come across a more detailed
explanation of each which seems complex, just skip back to this section and re-read this for the
simplified version.

In the rest of this chapter, we�re going to expand upon everything we just mentioned.

3.2 Channels, Events and Input/Output (IO)
Netty is a non-blocking, event driven, networking framework. In reality what this means for
you is that Netty uses threads to process IO events. For those who are familiar with multi-
threaded programming, you might be inclined to think that you need to synchronize your code.
This isn�t true, figure 3.1 shows why the design Netty uses to ensure no synchronization is
required on your part to process Netty events.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

39

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 3.1 � Diagram showing an EventLoopGroup and a Channel being bound to a single
EventLoop permanently

Figure 3.1 shows that Netty has these EventLoopGroups, those groups in turn have one or
more EventLoops. Think of EventLoops as the threads that perform the actual work for a
channel.

EventLoop Thread relationship

The EventLoop is always bound to a single Thread that never changed during it�s life time.

When a channel is registered, Netty �binds� that channel to a single EventLoop (and so to
a single thread) for the lifetime of that Channel. This is why your application doesn�t need to
synchronize on Netty IO operations because all IO for a given Channel will always be
performed by the same thread.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

40

http://www.manning-sandbox.com/forum.jspa?forumID=857

To help explain this, figure 3.2 shows the relationship of EventLoops to
EventLoopGroups.

Figure 3.2 � Inheritance relationship for EventLoops and EventLoopGroups

The relationship between an EventLoop and an EventLoopGroup may not be
immediately intuitive, because we�ve said that an EventLoopGroup contains one or more
EventLoop but this diagram shows that in fact, an EventLoop passes the �is-a�
EventLoopGroup test, i.e. an EventLoop is an EventLoopGroup. This means wherever
you can pass in an EventLoopGroup you can also just use a specific EventLoop.

3.3 Bootstrapping: What and Why
Bootstrapping in Netty is the process by which you configure your Netty application. You use a
bootstrap when you need to connect a client to some host and port, or bind a server to a given

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

41

http://www.manning-sandbox.com/forum.jspa?forumID=857

port. As the previous statement implies, there are two types of Bootstraps, one typically used
for clients, but is also used for DatagramChannel (simply called Bootstrap) and one for
servers (aptly named ServerBootstrap). Regardless of which protocol or protocols your
application uses, the only thing that determines which bootstrap you use is whether you�re
trying to create a client or a server.

There are several similarities between the two types of bootstraps, in fact, there are more
similarities than there are differences. Table 3.1 shows some of the key similarities and
differences between the two.

Table 3.1 Similarities and differences between the two types of Bootstraps

Similarities Bootstrap ServerBootstrap

Responsible for
Connects to a remote host and
port

Binds to local port

Number of EventLoopGroups 1 2

Groups, transports and handlers are covered separately later in this chapter, so we�ll only
take a look t the key differences between the types of Bootstraps. The first difference should be
obvious; �ServerBoostrap� binds to a port since servers must listen for connections while a
�Bootstrap� is used for client applications or DatagramChannel. With the �Bootstrap�
class you typically call connect() but you can also call bind() and then connect later using
the Channel that is included in the ChannelFuture returned from bind().

The second difference is perhaps the most important. Client bootstraps/applications use a
single EventLoopGroup whilst ServerBootstrap uses 2 (which in fact can be the same
instance). It may not be immediately obvious as to why this would be but it�s a good reason. A
ServerBootstrap can be thought to have two sets of channels. The first set containing a
single ServerChannel representing the server�s own socket which has been bound to a local
port. And the second set containing all the Channel representing the connections, which the
server has accepted. Figure 3.3 tries to help visualize what this looks like.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

42

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 3.3 - Represents the distinction between server and client groups

In figure 3.3, EventLoopGroup A's only purpose is to accept connections and hand them over
to EventLoopGroup B. The reason Netty has the ability to use two distinct set of groups is
because in situations where an application is accepting an extremely high volume of
connections, a single EventLoopGroup would become a bottleneck if the EventLoop is busy
with handle the already accepted connections and thus is not be able to accept new ones within
a reasonable time. The end result would be that some connections timeout. By having two
EventGroups, all connections can be accepted, even under extremely high load because the
EventLoops (and so underlying threads) accepting connections are not shared with those
processing the already accepted connections.

EventLoopGroup and EventLoop

The EventLoopGroup may contain more then one EventLoop, but if so depends on
configuration. Each Channel will have one EventLoop �bind� to it once it was created which will
never change. Because a EventLooopGroup contains naturally less EventLoop�s then the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

43

http://www.manning-sandbox.com/forum.jspa?forumID=857

number of Channels you have many Channels will share the same EventLoop. This means
keep th EventLoop to busy in one Channel will disallow to process the other Channels that are
bound to the same EventLoop. This is one of the reasons why you MUST NOT block the
EventLoop in all cases.

Figure 3.4 shows how this changes if you decide to configure your Netty server using the
same instance of EventLoopGroup twice.

Figure 3.4 � Netty server configured with only 1 EventLoopGroup

Netty allows the same EventLoopGroup to be used for processing IO and accepting
connections. In practice this works well for many applications. This case is represented in figure
3.4 where a single group, both accepts connections and processes IO.

In the next section we'll get into discussing how and when Netty performs IO operations.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

44

http://www.manning-sandbox.com/forum.jspa?forumID=857

3.4 Channel Handlers and Data Flow
We need to take a look at what happens to your data when you send or receive it. Re-call at
the beginning of this chapter we mentioned that Netty has this concept of a handler. To
understand what happens to data when it is written or read, it is first essential to have some
understanding of what handlers are. Handlers themselves depend upon the aforementioned
ChannelPipeline to prescribe their order of execution. Thus, it is not possible to define
certain aspects of a handler without defining the ChannelPipeline and in turn it is not
possible to define certain aspects of the ChannelPipeline without defining
ChannelHandlers. Needless to say we must start with one and proceed to the other defining
each in terms of themselves and each other. The next subsection will introduce both
ChannelHandlers and the ChannelPipeline in a way that makes this cyclic dependency
negligible.

3.4.1 Piecing it together, ChannelPipeline and handlers
In many ways a Netty ChannelHandler is what your application deals with the most. Even
when you don't realize it, if you're using a Netty application there is going to be at least one
ChannelHandler involved somewhere. In other words, they are key to many things. So what
exactly are they? It's not easy to give a definition of a ChannelHandler because they are so
generic but a ChannelHandler can be thought of as any piece of code that processes data
coming and going through the ChannelPipeline. Practically there is one parent interface
defining a handler called ChannelHandler. From this a ChannelInboundHandler and
ChannelOutboundHandler are derived as shown in figure 3.5.

Figure 3.5 � Relationship between ChannelHandler and it's derivatives

It is easier if we explain ChannelHandlers in terms of data flow but it is important to
remember that the examples used in this discussion are just that, examples.
ChannelHandlers are applied in many other ways, as you'll discover going through the rest
of this book.

Data flows in two directions within Netty, as figure 3.5 shows there is a clear distinction
between inbound (ChannelInboundHandler) and outbound (ChannelOutboundHandler)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

45

http://www.manning-sandbox.com/forum.jspa?forumID=857

handlers. Data is said to be outbound if the expected flow is from the user application to the
remote peer. Conversely, data is inbound if it is coming from the remote peer to the user
application.

In order for data to get from one end to another typically, one or more ChannelHandler
would have manipulated the data in some way. These ChannelHandlers would have been
added at the bootstrap phase of the application and the order in which they were added
determines the order in which they would have manipulated the data.

This arrangement of ChannelHandler in a specific order effectively constitutes to what
we've been referring to as the ChannelPipeline. In other words, the ChannelPipeline is
an arrangement of a series of ChannelHandler. Each ChannelHandler performs its actions
on the data (if it can handle it, for example inbound data can only be handled by
ChannelInboundHandlers) then may pass the transformed data to the next
ChannelHandler in the ChannelPipeline, until no more ChannelHandler remain.

ChannelHandler and Servlet similarities

In fact the design used within Netty is kind of similar to what is used in Servlets. A
ChannelHandler may do some action on the data and then may pass it to the next
ChannelHandler in the ChannelPipeline. Another often action is do not do any action at all and
just pass the specific event to the next ChannelHandler in the ChannelPipeline. This next
ChannelHandler may handle it then or just forward it to the next ChannelHandler again.

Figure 3.6 shows an example ChannelPipeline arrangement.

Figure 3.6 An example ChannelPipeline arragement

As figure 3.6 shows, both ChannelInboundHandler and ChannelOutboundHandler can
be mixed into the same ChannelPipeline.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

46

http://www.manning-sandbox.com/forum.jspa?forumID=857

In this ChannelPipeline, if a message is read or any other inbound event, it will start
from the head of the ChannelPipeline and be passed to the first ChannelInboundHandler. This
ChannelInboundHandler may process the event and / or pass it to the next
ChannelInboundHandler in the ChannelPipeline. Once there is no more
ChannelnboundHandler in the ChannelPipeline it will hit the tail of the
ChannelPipeline, which means no more processing will be done.

The inverse is also true, any outbound event (e,g, writes) will start from the tail of the
ChannelPipeline and be passed to the �last� ChannelOutboundHandler in the
ChannelPipeline. Here it acts the same as a ChannelInboundHandler, which means it
may process and / or pass the event to the next ChannelOutboundHandler in the
ChannelPipeline. The difference is that the next ChannelOutboundHandler is in fact the
�previous� one as the outbound events flow from the tail to the head of the
ChannelPipeline. Once there are no more ChannelOutboundHandler to which the event
can be passed it will hit the actual transport (which may be a network socket) and so trigger
some operation on it. Which may for example be a write operation.

ChannelInboundHandler and ChannelOutboundHandler base classes

An event can be forward to the next ChannelInbound or prev ChannelOutboundHandler in the
ChannelPipeline by using the ChanneHandlerContext passed in to each method. Because this
is what you usually want for events that you are not interested in Netty provides abstract
base classes called ChannelInboundHandlerAdapter and ChannelOutboundHandlerAdapter.
Each of this provide implementations for each method and just pass the event to the
next/prev handler in the ChannelPipeline by call the corresponding method on the
ChannelHandlerContext. You can then override the method in question to actually do the
handling of you need to.

You might be wondering, so if outbound and inbound operations are distinct, how does this
work when handlers are mixed in the same ChannelPipeline? Refer back to figure 3.4,
remember that inbound and outbound handlers have a different interface that both extend
ChannelHandler. This means that Netty can skip any handler that is not of a particular type
and hence not able to handle a given operation. So in the case of an outbound event,
ChannelInboundHandler will be skipped because Netty knows if each handler is and
implementation of ChannelInboundHandler or ChannelOutboundHandler.

Once a ChannelHandler is added to a ChannelPipeline it also gets what's called a
ChannelHandlerContext. Typically it is safe to get a reference to this object and keep it
around. This is not true when a datagram protocol is used such as UDP. This object can later be
used to obtain the underlying channel but is typically kept because you use it to write/send
messages. This means there are two ways of sending messages in Netty. You can write directly
to the channel or write to the ChannelHandlerContext object. The main difference between

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

47

http://www.manning-sandbox.com/forum.jspa?forumID=857

the two is that writing to the channel directly causes the message to start from the tail of the
ChannelPipeline where as writing to the context object causes the message to start from
the next handler in the ChannelPipeline.

3.5 Encoders, Decoders and Domain Logic: A Closer Look at
Handlers

As we said before, there are many different types of handlers. What each one does is
dependent on which base class they inherit from. Netty provides a series of �Adapter� classes
which makes things a bit easier. It does this because while in the pipeline, each handler is
responsible for forwarding Netty events on to the next handler in the ChannelPipeline. With
the *Adapter classes (and sub-classes) this is automatically done for you so you only need to
override the methods/events you're interested in. Beside the *Adapter classes there are also
others that extend those and provide extra functionalities like help to easy encode / decode
message.

Adapter classes

There are a few adapter classes which allows you to write your ChannelHandlers in an easy
way. Whenever you want to write your own ChannelHandler I suggest you to extend one of
the adapter classes or one of the encoder/decoder classes (which in fact extend one of the
adapter classes). Netty comes with the following adapters:
 - ChannelHandlerAdapter
 - ChannelInboundHandlerAdapter
 - ChannelOutboundHandlerAdapter
 - ChannelDuplexHandlerAdapter

Three ChannelHandler we want to take a particular look at are encoders, decoders and the
SimpleChannelInboundHandler<T> (which is a sub-class of
ChannelInboundHandlerAdapter).

3.5.1 Encoders, decoders
When you send or receive a message with Netty it must be converted from one form to
another. If the message is being received it must be converted from bytes to a Java object
(decoded by some kind of decoder). If the message is being sent it must be converted from a
Java object to bytes (encoded by some type of encoder). This conversion will always happen
when sending data over the network, byte-message or message-bytes, because you can only
transfer bytes across a network.

There are various types of base classes for encoders and decoders, depending on what you
want to do. For example, your application may use Netty in a way that doesn't require the
message to be converted to bytes immediately so instead the message is converted to another

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

48

http://www.manning-sandbox.com/forum.jspa?forumID=857

type of message. An encoder is still used but a different base class exists for that. To figure out
which base class is applicable there is a little convention that can be used to know the name of
the base class. In general base classes will have a name similar to �ByteToMessageDecoder�
or �MessageToByteEncoder�. Or in case of a specialized type you may find something like
�ProtobufEncoder� and �ProtobufDecoder� which are used to support Google's protocol
buffers.

Strictly speaking other handlers could do what encoders and decoders do but re-call we said
that there are different adapter classes depending on what you wanted to do? In the case of
decoders there is a ChannelInboundHandlerAdapter or ChannelInboundHandler which
all decoders extend or implement. The �channelRead� method/event is overridden, this
method is called by each message that is read from the inbound channel. The overridden
channelRead method will then call the �decode� method of each decoder and forward the
decoded message to the next ChannelInboundHandler in the ChannelPipeline via the
ChannelHandlerContext.fireChannelRead(decodedMessage) method.

A similar thing happens when you send messages, except an encoder converts the message
to bytes and those bytes are forwarded to the next ChannelOutboundHandler.

3.5.2 Domain logic
Perhaps the most common handler your application will have to deal with is the one which
receives the decoded message and allows your application to apply some domain logic to the
message. To create a handler like this, your application only needs to extend the base class
called SimpleChannelInboundHandler<T>, where T is the type of message your handler
can process. It is in this handler where your application obtains a reference to the
ChannelHandlerContext by overriding one of the methods from the base class, all of them
accept the ChannelHandlerContext as a parameter which you can then store as a field in
the class.

This handler's main method of concern is the
�channelRead0(ChannelHandlerContext,T)� method. Whenever Netty invokes this
method, the object T is the message, which your application can then process. How you
process the message is entirely up to you and the needs of the application. One thing to note
while processing messages is that, even though there are multiple threads typically processing
IO in Netty, your application should try not to block the IO thread as this could lead to
performance issues in some high throughout environments.

Blocking operations

As said before you MUST NOT block the IO Thread at all. This means doing blocking
operations within your ChannelHandler is problematic. Lucky enough there is a solution for
this. Netty allows to specify an EventExecutorGroup when adding ChannelHandlers tot he
ChannelPipeline. This EventExecutorGroup will then be used to obtain an EventExecutor and
this EventExecutor will execute all the methods of the ChannelHandler. The EventExecutor

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

49

http://www.manning-sandbox.com/forum.jspa?forumID=857

here will use a different Thread then the one that is used for the IO and thus free up the
EventLoop.

3.6 Summary
This chapter presented many Netty concepts in a way that is meant to give you an idea of how
all the pieces fit together. It does this because the following chapters discuss each of these
topics at length in their individual chapters and it may not always be clear how the topic being
discussed relates to everything else. You've just seen several key topics glanced over in a
single chapter including

 Bootstrap or ServerBootstrap

 EventLoop

 EventLoopGroup

 ChannelPipeline

 Channel

 Future or ChannelFuture

 ChannelInitializer

 ChannelHandler and its sub-types

In the subsequent chapters you'll meet all of these topics again as they are covered in more
detail.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

50

http://www.manning-sandbox.com/forum.jspa?forumID=857

4
Transports

This chapter covers

 Transports

 NIO, OIO, Local, Embedded

 Use-cases

 APIs

One of the most important tasks of a network application is transferring data. This can be done
differently depending on the kind of transport used, but what gets transferred is always the
same: bytes over the wire. Transports help abstract how the data is transferred. All you need
to know is that you have bytes to send and receive. Nothing more, nothing less.

If you�ve ever worked with a Java-provided way of network programming you�ve probably
come across a situation when you wanted to switch from blocking transports to nonblocking
transports or vice versa. This switch isn�t easily possible, because it uses different Java
interfaces and classes to handle blocking versus nonblocking.

Netty offers a unified API on top of its transport implementation, which makes this situation
easier. You�ll be able to keep your code as generic as possible, and not depend on some
implementation-dependent API. There won�t be a need to refactor your whole code base
because you need to move from one transport to another. If you ever needed to do so while
using the plain network API that comes with the JDK, you already know how massive such
changes can be. Don�t waste your time with this boring stuff; spend it on something more
productive.

This chapter shows you what the unified API looks like and how to use it. I�ll compare it to
the API that comes with the JDK and show you why Netty makes it easier to work with it. It will
also explain the various transport implementations that are bundled with Netty and which is
preferred for each use case. After gathering this information, you�ll be able to choose the best
option for your specific application, giving you the best result for your use case.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

51

http://www.manning-sandbox.com/forum.jspa?forumID=857

There�s no other experience needed other than with Java itself. Having experience with
network frameworks or network programming can help but isn�t needed.

Let�s see how transports work in a real-world situation.

4.1 Case study: transport migration
To give you an idea how transports work, I�ll start with a simple application which does nothing
but accept client connections and write �Hi!� to the client. After that�s done, it disconnects the
client. I won�t get into the details of this specific implementation as it�s only an example.

4.1.1 Using I/O and NIO without Netty
To start this case study I�ll implement the application without Netty. The following listing shows
the code using a blocking input/output (I/O).

Listing 4.1 Blocking networking without Netty
public class PlainOioServer {

 public void serve(int port) throws IOException {
 final ServerSocket socket = new ServerSocket(port); #1
 try {
 while (true) {
 final Socket clientSocket = socket.accept(); #2
 System.out.println("Accepted connection from " +
clientSocket);

 new Thread(new Runnable() { #3
 @Override
 public void run() {
 OutputStream out;
 try {
 out = clientSocket.getOutputStream();

out.write("Hi!\r\n".getBytes(Charset.forName("UTF-8"))); #4
 out.flush();
 clientSocket.close(); #5

 } catch (IOException e) {
 e.printStackTrace();
 try {
 clientSocket.close();
 } catch (IOException ex) {
 // ignore on close
 }
 }
 }
 }).start(); #6
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

#1 Bind server to port

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

52

http://www.manning-sandbox.com/forum.jspa?forumID=857

#2 Accept connection
#3 Create new thread to handle connection
#4 Write message to connected client
#5 Close connection once message written and flushed
#6 Start thread to begin handling

This works fine, but after some time you notice that the blocking handling doesn�t scale enough
for your use case. You want to use asynchronous networking to handle all the concurrent
connections, but the problem is that the API is completely different. You start to rewrite your
application as shown in the following listing.

Listing 4.2 Asynchronous networking without Netty
public class PlainNioServer {

 public void serve(int port) throws IOException {
 System.out.println("Listening for connections on port " + port);
 ServerSocketChannel serverChannel;
 Selector selector;

 serverChannel = ServerSocketChannel.open();
 ServerSocket ss = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ss.bind(address); #1
 serverChannel.configureBlocking(false);
 selector = Selector.open(); #2
 serverChannel.register(selector, SelectionKey.OP_ACCEPT); #3
 final ByteBuffer msg = ByteBuffer.wrap("Hi!\r\n".getBytes());

 while (true) {

 try {
 selector.select(); #4
 } catch (IOException ex) {
 ex.printStackTrace();
 // handle in a proper way
 break;
 }

 Set<SelectedKey> readyKeys = selector.selectedKeys(); #5
 Iterator<SelectedKey> iterator = readyKeys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) { #6
 ServerSocketChannel server = (ServerSocketChannel)
key.channel();
 SocketChannel client = server.accept();
 System.out.println("Accepted connection from " +
client);
 client.configureBlocking(false);
 client.register(selector, SelectionKey.OP_WRITE |
SelectionKey.OP_READ, msg.duplicate()); #7
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

53

http://www.manning-sandbox.com/forum.jspa?forumID=857

 if (key.isWritable()) { #8
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer buffer = (ByteBuffer) key.attachment();
 while (buffer.hasRemaining()) {
 if (client.write(buffer) == 0) { #9
 break;
 }
 }
 client.close(); #10
 }
 } catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 } catch (IOException cex) {
 }
 }
 }
 }
 }
}

#1 Bind server to port
#2 Open selector that handles channels
#3 Register erverSocket to selector and specify that it is interested in new accepted clients
#4 Wait for new events that are ready for process. This will block until something happens
#5 Obtain all SelectionKey instances that received events
#6 Check if event was because new client ready to get accepted
#7 Accept client and register it to selector
#8 Check if event was because socket is ready to write data
#9 Write data to connected client. This may not write all the data if the network is saturated. If so it will pick
up the not-written data and write it once the network is writable again.
#10 Close connection

As you can see, the code is completely different, even if it does exactly the same thing. And
this is only a simple application. Consider the work it would take to port something more
complex.

With this in mind, let�s implement the same application with Netty.

4.1.2 Using I/O and NIO with Netty
Start by writing a blocking version of the application, but this time use Netty as a network
framework, as shown in the following listing.

Listing 4.3 Blocking networking with Netty
public class NettyOioServer {

 public void server(int port) throws Exception {
 final ByteBuf buf = Unpooled.unreleaseableBuffer(
 Unpooled.copiedBuffer("Hi!\r\n", Charset.forName("UTF-8")));
 EventLoopGroup group = new OioEventLoopGroup();
 try {
 ServerBootstrap b = new ServerBootstrap(); #1
 b.group(group) #2
 .channel(OioServerSocketChannel.class)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

54

http://www.manning-sandbox.com/forum.jspa?forumID=857

 .localAddress(new InetSocketAddress(port))
 .childHandler(new ChannelInitializer<SocketChannel>() { #3
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(
 new ChannelInboundHandlerAdapter() { #4
 @Override
 public void channelActive(
 ChannelHandlerContext ctx) throws Exception {
 ctx.write(buf.duplicate())
 .addListener(ChannelFutureListener.CLOSE);#5
 }
 });
 }
 });
 ChannelFuture f = b.bind().sync(); #6
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync(); #7
 }
 }
}

#1 Create ServerBootstrap to allow bootstrap to server instance
#2 Use OioEventLoopGroup Ito allow blocking mode (Old-IO)
#3 Specify ChannelInitializer that will be called for each accepted connection
#4 Add ChannelHandler to intercept events and allow to react on them
#5 Write message to client and add ChannelFutureListener to close connection once message written
#6 Bind server to accept connections
#7 Release all resources

You may notice that although the code itself is compact, it does exactly the same thing as the
code in listing 4.1. But that�s only one of the advantages.

Let�s modify the code so that it works asynchronously.

4.1.3 Implementing asynchronous support
You�ll see that the code in the following listing looks much the same as listing 4.3. A change of
two lines of code is all that�s needed to switch from blocking to asynchronous mode. You swap
out the OIO transport for the NIO. The following listing shows the changed lines in bold.

Listing 4.4 Asynchronous networking with Netty
public class NettyNioServer {

 public void server(int port) throws Exception {
 final ByteBuf buf = Unpooled.copiedBuffer("Hi!\r\n",
Charset.forName("UTF-8"));

EventLoopGroup group = new NioEventLoopGroup();
 try {
 ServerBootstrap b = new ServerBootstrap(); #1
 b.group(group)
 .channel(NioServerSocketChannel.class)
 .localAddress(new InetSocketAddress(port))
 .childHandler(new ChannelInitializer<SocketChannel>() { #3

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

55

http://www.manning-sandbox.com/forum.jspa?forumID=857

 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(
 new ChannelStateHandlerAdapter() { #4
 @Override
 public void channelActive(
 ChannelHandlerContext ctx) throws Exception {
 ctx.write(buf.duplicate())
 .addListener(ChannelFutureListener.CLOSE);#5
 }

 @Override
 public void inboundBufferUpdated(
 ChannelHandHandlerContext ctx)
 Throws Exception {
 czx.fireInboundBufferUpdated();
 }

 });
 }
 });
 ChannelFuture f = b.bind().sync(); #6
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync(); #7
 }
 }
}

#1 Create ServerBootstrap to allow bootstrap to server
#2 Use NioEventLoopGroup forI nonblocking mode
#3 Specify ChannelInitializer called for each accepted connection
#4 Add ChannelHandler to intercept events and allow to react on them
#5 Write message to client and add ChannelFutureListener to close connection once message written
#6 Bind server to accept connections
#7 Release all resources

Because Netty exposes the same API for every transport implementation, it doesn�t matter
what implementation you use. Netty exposes its operations through the Channel interface and
its ChannelPipeline and ChannelHandler.

Now that you�ve seen Netty in action, let�s take a deeper look at the transport API.

4.2 Transport API
At the heart of the transport API is the channel interface, which is used for all of the outbound
operations.

See the hierarchy of the Channel interface as shown in figure 4.1.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

56

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 4.1 Channel interface hierarchy

As you can see in figure 4.1, a channel has a ChannelPipeline and a ChannelConfig
assigned to it.

The ChannelConfig has the entire configuration settings stored for the channel and allows
for updating them on the fly. Often transport has specific configuration settings that are
possible only on the transport and not on other implementations. For this purpose it may
expose a subtype of ChannelConfig. For more information, refer to the javadocs of the
specific ChannelConfig implementation.

The ChannelPipeline holds all of the ChannelHandler instances that should be used
for the inbound and outbound data that is passed through the channel. These
ChannelHandler implementations allow you to react to state changes or transform data.
This book includes a chapter on the details of ChannelHandlers, as these are one of the key
concepts of Netty.

For now, I�ll note that you can use ChannelHandler for these tasks:

 Transforming data from one format to another.

 Notifying you of exceptions.

 Notifying you when a Channel becomes active or inactive.

 Notifying you once a channel is registered/deregistered from an EventLoop.

 Notifying you about user-specific events.

These ChannelHandler instances are placed in the ChannelPipeline, where they execute
one after the other. It�s similar to a chain, which if you�ve used in servlets in the past, you
may be familiar with. For more details on ChannelHandler topics, see chapter 6.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

57

http://www.manning-sandbox.com/forum.jspa?forumID=857

Channelpipeline

The ChannelPipeline implements the Intercepting Filter Pattern, which means you can chain
different ChannelHandlers and intercept the data or events which go through the
ChannelPipeline.

Think of it like UNIX pipes which allows to chain different Commands (where the
ChannelHandler would be the Command here).

You can also modify the ChannelPipeline on the fly, which allows you to add/remove
ChannelHandler instances whenever needed. This can be used to build highly flexible
applications with Netty.

In addition to accessing the assigned ChannelPipeline and ChannelConfig, you can
also operate on the Channel itself. The Channel provides many methods, but the most
important ones are listed in table 4.1.

Table 4.1 Most important channel methods

Method name Description

eventLoop()
Returns the EventLoop that is assigned to the
channel

pipeline()
Returns the ChannelPipeline that is
assigned to the channel

isActive()
Returns if the channel is active, which means it�s
connected to the remote peer

localAddress()
Returns the SocketAddress that is bound
local

remoteAddress()
Returns the SocketAddress that is bound
remote

write()
Writes data to the remote peer. This data is
passed though the ChannelPipeline

You�ll learn more later about how you can use all of these features. Remember for now that
you�ll always operate on the same interfaces, which gives you a high degree of flexibility and
guards you from big refactoring once you want to try out a different transport implementation.

For writing data to the remote peer you�d call Channel.write() as shown in the following
listing.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

58

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 4.5 Writing to a channel
Channel channel = ...
ByteBuf buf = Unpooled.copiedBuffer(„your data“, CharsetUtil.UTF_8); #1
ChannelFuture cf = channel.write(buf); #2

cf.addListener(new ChannelFutureListener() { #3

 @Override
 public void operationComplete(ChannelFuture future) {
 if (future.isSuccess()) { #4
 System.out.println(“Write successful“);
 } else {
 System.err.println(“Write error“); #5
 future.cause().printStacktrace();
 }
 }
});

#1 Create ByteBuf that holds data to write
#2 Write data
#3 Add ChannelFutureListener to get notified after write completes
#4 Write operation completes without error
#5 Write operation completed but because of error

Please note that Channel is thread-safe, which means it is safe to operate on it from different
Threads. All it�s methods are safe to use in a multi-thread enviroment. Because of this it�s safe
to store a reference to it in your application and use it once the need arises to write something
to the remote peer, even when using many threads. The following listing shows a simple
example of writing with multiple threads.

Listing 4.6 Using the channel from many threads
 final Channel channel = ...

final ByteBuf buf = Unpooled.copiedBuffer(„your data“,
 CharsetUtil.UTF_8); #1
Runnable writer = new Runnable() { #2
 @Override
 public void run() {
 channel.write(buf.duplicate());
 }
};
Executor executor = Executors.newChachedThreadPool(); #3

// write in one thread
 executor.execute(writer); #4

// write in another thread
 executor.execute(writer); #5

 �
#1 Create ByteBuf that holds data to write
#2 Create Runnable which writes data to channel
#3 Obtain reference to the Executor which uses threads to execute tasks
#4 Hand over write task to executor for execution in thread
#5 Hand over another write task to executor for execution in thread

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

59

http://www.manning-sandbox.com/forum.jspa?forumID=857

Also, this method guarantees that the messages are written in the same order as you passed
them to the write method. For a complete reference of all methods, refer to the provided API
documentation (javadocs).

Knowing the interfaces used is important, but it�s also quite helpful to know what different
transport implementations already ship with Netty. Chances are good that everything is already
provided for you. In the next section I�ll look at what implementations are provided and what
their behaviors are.

4.3 Included transports
Netty already comes with a handful of transports that you can use. Not all of them support all
protocols, which means the transport you want to use also depends on the underlying protocol
that your application depends on. You�ll learn more about which transport supports which
protocol in this section.

Table 4.1 shows all of the transports that are included by default in Netty.

Table 4.1 Provided transports

Name Package Description

NIO io.netty.channel.socket.nio
Uses the java.nio.channels package as a
foundation and so uses a selector-based
approach.

OIO io.netty.channel.socket.oio
Uses the java.net package as a foundation
and so uses blocking streams.

Local io.netty.channel.local
A local transport that can be used to
communicate in the VM via pipes.

Embedded io.netty.channel.embedded

Embedded transport, which allows using
ChannelHandlers without a real network
based Transport. This can be quite useful for
testing your ChannelHandler
implementations.

Now let�s go into more detail by first looking into the most-used transport implementation, the
NIO transport.

4.3.1 NIO � Nonblocking I/O
The NIO transport is currently the most used. It provides a full asynchronous implementation
of all I/O operations by using the selector-based approach that�s included in Java since Java 1.4
and the NIO subsystem.

The idea is that a user can register to get notified once a channel�s state changes. The
possible changes are:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

60

http://www.manning-sandbox.com/forum.jspa?forumID=857

 A new Channel was accepted and is ready.

 A Channel connection was completed.

 A Channel has data received that is ready to be read.

 A Channel is able to send more data on the channel.

The implementation is then responsible for reacting to these state changes to reset them and
to be notified once a state changes again. This is done with a thread that checks for updates
and, if there are any, dispatches them accordingly.

Here it�s possible to register to be notified for only one of the events and ignore the rest.
The exact bit-sets that are supported by the underlying selector are shown in table 4.2.

These are defined in the SelectionKey class.

Table 4.2 Selection operation bit-set

Name Description

OP_ACCEPT
Get notified once a new connection is accepted and a
channel is created.

OP_CONNECT Get notified once a connection attempt finishes.

OP_READ
Get notified once data is ready to be read out of the
channel.

OP_WRITE

Get notified once it�s possible to write more data to the
channel. Most of the time this is possible, but it may not
be because the OS socket buffer is completely filled.
This usually happens when you write faster then the
�remote peer� can handle it.

Netty�s NIO transport uses this model internally to receive and send data, but exposes its own
API to the user, which completely hides the internal implementation. As mentioned previously,
that helps to expose only one unified API to the user, while hiding all of the internals. Figure
4.2 shows the process flow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

61

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 4.2 Selector logic

#1 New created channel that registers to selector
#2 Selector to handle state changes
#3 Already registered channels
#4 The Selector.select() method which blocks until new state changes received or given timeout elapsed
#5 Check if there were state changes
#6 Handle all state changes
#7 Execute other tasks in same thread in which selector operates

Because of the nature of this transport, it may come with a bit of latency when processing
events, and so can have a lower throughput than the OIO transport. This is caused by the way
the selector works, as it may take some time to be notified about state changes. I�m not
talking about seconds of delay, only milliseconds. This may not sound like much of a delay, but
it can add up if you try to use your network application in a network where gigabit speed is
offered.

One feature that offers only the NIO transport at the moment is called �zero-file-copy�. This
feature allows you to quickly and efficiently transfer content from your file system. The feature
provides a way to transfer the bytes from the file system to the network stack without copying
the bytes from the kernel space to the user space.

Be aware that not all operation systems support this. Please refer to operating system�s
documentation to find out if it�s supported. Also, be aware that you�ll only be able to benefit
from this if you don�t use any encryption/compression of the data. Otherwise it will need to
copy the bytes first to the user space to do the actual work, so only transferring the raw

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

62

http://www.manning-sandbox.com/forum.jspa?forumID=857

content of a file makes use of this feature. What actually would work is to �pre-encrypt� a file
before transfer it.

One application that can really make use of this is an FTP or HTTP server that downloads big
files.

The next transport I�ll discuss is the OIO transport, which provides a blocking transport.

4.3.2 OIO � Old blocking I/O
The OIO transport is a compromise in Netty. It builds on the known unified API but isn�t
asynchronous by nature because it uses the blocking java.net implementations under the hood.
At first glance, this transport may not look useful to you, but it has its use cases. You�ll see
several use cases later, but in this section, we�ll look at one specifically.

Suppose you need to port some legacy codethat uses many libraries that do blocking calls
(such as database calls via jdbc). It may not be feasible to port the logic to not block. Instead,
you could use the OIO transport in the short term and port it later to one of the pure
asynchronous transports. Let�s focus on how it works.

Because the OIO transport uses the java.net classes internally, it also uses the same logic
that you may already be familiar with if you previously written network applications.

When using these classes, you usually have one thread that handles the acceptance of new
sockets (server-side) and then creates a new thread for each accepted connection to serve the
traffic over the socket. This is needed as every I/O operation on the socket may block at any
time. If you share the same thread over more than one connection (socket), this could lead to
a situation where blocking an operation could block all other sockets from doing their work.

Knowing that operations may block, you may start to wonder how Netty uses it while still
providing the same way of building APIs. Here Netty makes use of the SO_TIMEOUT that you
can set on a socket. This timeout specifies the maximum number of milliseconds to wait for an
I/O operation to complete. If the operation doesn�t complete within the specified timeout, a
SocketTimeoutException is thrown. Netty catches this SocketTimeoutException and
moves on with its work. Then on the next EventLoop run, it tries again. Unfortunately, this is
the only way to do this and still confirm the inner working of Netty. The problem with this
approach is that firing the SocketTimeoutException isn�t free, as it needs to fill the
StrackTrace, and so on.

Figure 4.3 shows the logic.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

63

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 4.3 OIO-Processing logic

#1 Thread allocated to socket
#2 Socket connected to remote peer
#3 Read operation that may block
#4 Read complete
#5 Read completed and able to read bytes so handled them
#6 Execute other tasks submitted belonging to socket
#7 Try to read again

Now you know the two most used transports in Netty, but there are still others which we will
cover in the next sections.

4.3.3 Local � In VM transport
Netty contains the so-called local transport. This transport implementation can be used to
communicate within a VM and still use the same API you�re used to. The transport is fully
asynchronous as NIO .

Every Channel uses and unique SocketAddress which is stored in a registry. This
SocketAddress can then be used to connect to it via the client. It will be registered as long
as the server is running. Once the channel is closed, it will automatically deregister it and so
the clients won�t be able to access it anymore.

The behavior of connecting to a local transport server is nearly the same as with other
transport implementations. One important thing to note is that you can only make use of them
on the server and client side at the same time. It�s not possible to use the local transport on
the server side but some other on the client side. This may seem like a limitation, but once you

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

64

http://www.manning-sandbox.com/forum.jspa?forumID=857

think about it, it makes sense. As the local transport does not bound a socket and so does not
accept �real� network traffic, it�s not possible to work with any other transport implementation.

4.3.4 Embedded transport
Netty also includes the embedded transport. This isn�t a real transport when you compare it
with the others listed previously, but it�s included to complete this section. If it�s not a real
transport, what can it be used for?

The embedded transport allows you to interact with your different ChannelHandler
implementation more easily. It�s also easy to embed ChannelHandler instances in other
ChannelHandlers and use them like a helper class.

This is often used in test cases to test a specific ChannelHandler implementation, but can
also be used to re-use some ChannelHandler in your own ChannelHandler without event
extend it. For this purpose, it comes with a concrete Channel implementation.

Table 4.4 Embedded channels

Channel type Usage

EmbeddedChannel
Test ChannelHandler or
embedded them in your own
ChannelHandler for reuse.

Chapter 10 shows how the Embedded transport is used for testing purposes in great detail.

4.4 When to use each type of transport
Now that you�ve learned about all the transports in detail, you may ask when you should
choose one over the other. As mentioned previously, not all transports support all core
protocols. This can also limit the transports you can choose from. Table 4.6 lists the protocols
that each transport supports.

Table 4.5 Transport support by protocol

Transport TCP UDP SCTP*

NIO X X X

OIO X X X

Local

Embedded
* Only supported on Linux at the moment. This may change in the future..The content of the
table reflects what is supported at the time of publication.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

65

http://www.manning-sandbox.com/forum.jspa?forumID=857

Enabling SCTP on Linux

Be aware that for SCTP, you�ll need to have the user space libraries installed as well as a
kernel that supports it.

For Ubuntu, use the following command:
sudo apt-get install libsctp1

For Fedora, you use yum:
sudo yum install kernel-modules-extra.x86_64 lksctp-tools.x86_64

Please refer to the documentation of each Linux distribution for more information about
how to enable SCTP.

Other than the SCTP items, there aren�t any hard rules, but because of the nature of the
transports there are some suggestions. It�s also likely that you have to handle more concurrent
connections when you implement a server than if you implement a client.

Let�s take a look at the use cases that you�re likely to experience.

 Low concurrent connection count

For applications in which you expect only a low count of concurrent connections, start
with the OIO transport. As with low concurrent connections, you don�t need to worry too
much about the limitation of having one thread allocated per connection. The resource
usage will not be a problem in this scenario. You may wonder what constitutes a low-
connection count; that�s hard to say, but remember that with the NIO transport it�s
possible to serve between tens of thousands and hundreds of thousands of concurrent
connections. I�d label anything under 1,000 concurrent connections as a low concurrent
connection count.

In this specific use case, you�ll only gain from the low latency that the OIO transport
offers, so you�ll probably see a much better throughput, too.

Anyway there are still situations in which NIO might be the better fit even with low
concurrent connections count. For example if your connections are �very active� the
context switching that OIO needs might be a too big impact. As always it�s hard to give a
hard rule here, as it all depends on your application and needs.

 High concurrent connection count

If you expect your application to handle many concurrent connections at the same time,
choose the NIO transport. These transports handle multiple concurrent connections as
they don�t use one thread per connection, but use a few threads and share them across
the connections.

 Low latency

If you require significantly low latency, you�ll likely want to use OIO first. OIO has much
less latency then NIO because of its internal design, as explain in the previous two
bullet-points.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

66

http://www.manning-sandbox.com/forum.jspa?forumID=857

But, as always, it�s a tradeoff, as you�ll have to trade lower latency with higher thread
count.

 Blocking code base

If you�re converting an old code base, which was heavily based on blocking networking
and application design, to Netty, then you�re likely to have several operations that would
block the I/O thread for too long to scale efficiently with an asynchronous transport such
as NIO. You could fix this by rewriting your entire stack, but this is may not be doable in
the target timeframe. In that case, start with OIO and when you think you need more
scale, move over to NIO.

 Communicate within the same JVM

If you only need to communicate within the same VM and have no need to expose the
service over the network, then you have the perfect use case for the local transport. This
is because you�ll remove all the overhead of real network operations, but still be able to
reuse your Netty code base.

This also makes it easy later to expose the service over the network if the need arises.
The only thing that needs to be done in that case is to replace the transport with NIO or
OIO, and maybe add an extra encoder/decoder that converts Java objects to ByteBuf
and vice versa.

 Testing your ChannelHandler implementations

If you want to write tests for your ChannelHandler implementations that aren�t
integration tests, give the embedded transport a spin. It makes it easy to test
ChannelHandlers without the need for creating many mocks, while still conforming to
the event flow that is the same in all transports. This guarantees that the
ChannelHandler will also work once you put it to use with some real transports.

Chapter 7 gives you more details about testing ChannelHandlers.

As you now know, it�s important to understand what kind of use case/nature your application
has, and always choose the transport that will give you the best result. Table 4.6 summarizes
the common use cases.

Table 4.6 Optimal transport for an application

Application needs Recommended transport

Low concurrent connection count OIO

High concurrent connection count NIO

Low latency OIO

Blocking code base OIO

Communication within the same JVM Local

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

67

http://www.manning-sandbox.com/forum.jspa?forumID=857

Testing your ChannelHandler
implementations

Embedded

4.5 Summary
In this chapter you learned one of the fundamentals of Netty, and how it�s provided to the
user. You learned what a transport is and what it�s used for. Also, I explained the API and gave
some examples of its uses.

I highlighted the shipped transports of Netty and explained their behavior. You learned what
minimum requirements the transports have, as not all transports work with the same Java
version or may only work on specific operating systems.

You also learned which transport should be used for which use case, as not every transport
is optimal for a specific use case.

If you�re looking for more information about how you would implement your own transport
and make it usable in Netty, refer to chapter 17. This will provide you with all the needed
steps.

The next chapter will focus on ByteBuf and MessageList, which are �data containers�
used within Netty to transfer data. You�ll learn how to use it and how you can create the best
performance from it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

68

http://www.manning-sandbox.com/forum.jspa?forumID=857

5
Buffers

This chapter covers

 ByteBuf

 ByteBufHolder

 ByteBufAllocator

 Allocating and performing operations on these interfaces

Whenever you need to transmit data it must involve a buffer. Java�s NIO API comes with its
own Buffer class, but as I discussed in previous chapters, that implementation is fairly limited
and not optimized. Working with the JDK�s ByteBuffer is often cumbersome and more
complex than needed. A buffer is an important component and providing the needed layer is a
required task and should be part of the API.

Luckily, Netty comes with a powerful buffer implementation that�s used to represent a
sequence of bytes and helps you operate with either raw bytes or custom POJOs. The new
buffer type, the ByteBuf, is effectively Netty�s equivalent to the JDK�s ByteBuffer. The
ByteBuf's purpose is to pass data through the Netty pipeline. It was designed from the
ground up to address problems with the JDK�s ByteBuffer and to meet the daily needs of
networking application developers, making them more productive. This approach has
significant advantages over using the JDK�s ByteBuffer.

Note Throughout the rest of this book I�ll refer to Netty�s buffer interface and
implementations as data containers to help differentiate them from the Java implementation,
which I�ll continue referring to as Java�s buffer API.

 In this chapter, you�ll learn about Netty�s buffer API, how it�s superior to what the JDK
provides out of the box, what makes it so powerful, and why it�s more flexible than the JDK�s
buffer API. You�ll gain a deeper understanding of how to access data that�s exchanged in the
Netty framework and how you can work with it. This chapter also builds the groundwork for
later chapters, as the buffer API is used nearly everywhere in Netty.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

69

http://www.manning-sandbox.com/forum.jspa?forumID=857

Because the buffer passes data through Netty�s ChannelPipeline and ChannelHandler
implementations, the buffer is prevalent in the day-to-day development of Netty applications.
ChannelHandler and ChannelPipeline will be discussed in detail in chapter 6.

5.1 Buffer API
Netty�s buffer API has two interfaces:

 ByteBuf

 ByteBufHolder

Netty uses reference-counting to know when it�s safe to release a Buf and its claimed
resources. While it�s useful to know that Netty uses reference counting, it�s all done
automatically. This allows Netty to use pooling and other tricks to speed things up and keep the
memory utilization at a sane level. You aren�t required to do anything to make this happen, but
when developing a Netty application, you should try to process your data and release pooled
resources as soon as possible.

Netty�s buffer API offers several more advantages:

 You can define your own buffer type, if necessary.

 Transparent zero copy is achieved by a built-in composite buffer type.

 Capacity is expanded on demand, such as with StringBuffer.

 No need to call flip() to switch between reader/writer mode.

 Separate reader and writer index.

 Method chaining.

 Reference counting.

 Pooling.

We�ll have a deeper look at some of these, including pooling, in later sections of this chapter.
Let�s get started with the container for bytes, which you may need first.

5.2 ByteBuf�The byte data container
Whenever you need to interact with a remote peer such as a database, the communication
needs to be done in bytes. For this and other reasons an efficient, convenient, and easy-to-use
data structure is required, and Netty's ByteBuf implementation meets these requirements and
more, making it an ideal data container, optimized for holding and interacting with bytes.

ByteBuf is a data container that allows you to add/get bytes from it in an efficient way. To
make it easier to operate, it uses two indices: one for reading and one for writing. This allows
you to read data out of them in a sequential way and "jump" back to read it again. All you need
to do is adjust the reader index and start the read operation again.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

70

http://www.manning-sandbox.com/forum.jspa?forumID=857

5.2.1 How it works
After something is written to the ByteBuf, its writerIndex is increased by the amount of
bytes written. After you start to read bytes, its readerIndex is increased. You can read bytes
until the writerIndex and readerIndex are at the same position. The ByteBuf then
becomes unreadable, so the next read request triggers an IndexOutOfBoundsException
similar to what you�ve seen when trying to read beyond the capacity of an array.

Calling any of the buffer�s methods beginning with "read" or "write" automatically advances
the reader and writer indexes or you. There are also relative operations to �set� and �get�
bytes. These don�t move the indexes but operate on the relative index that was given.

A ByteBuf may have a maximum capacity to set an upper limit to the maximum data it
can hold, trying to move the writer index beyond this capacity will result in an exception. The
default limit is Integer.MAX_VALUE.

Figure 5.2 shows how a ByteBuf is laid out.

Figure 5.1 A 16-byte ByteBuf, initialized with the read and write indices set to 0

As Figure 5.1 shows, a ByteBuf is similar to a byte array, the most notable difference being
the addition of the read and write indices which can be used to control access to the buffer's
data.

You�ll learn more about the operations that can be performed on a ByteBuf in a later
section. For now, keep this in mind and let�s review the different types of ByteBuf that you�ll
most likely use.

5.2.2 Different types of ByteBuf
There are three different types of ByteBuf you�ll encounter when using Netty (there are more,
but these are used internally). You may end up implementing your own, but this is out of scope
here. Let�s look at the provided types that you are most likely interested in.

HEAP BUFFERS

The most used type is the ByteBuf that stores its data in the heap space of the JVM. This is
done by storing it in a backing array. This type is fast to allocate and also de-allocate when

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

71

http://www.manning-sandbox.com/forum.jspa?forumID=857

you�re not using a pool. It also offers a way to directly access the backing array, which may
make it easier to interact with �legacy code�.

Listing 5.1 Access backing array
ByteBuf heapBuf = ...;
if (heapBuf.hasArray()) { #1
 byte[] array = heapBuf.array(); #2
 int offset = heapBuf.arrayOffset() + heapBuf.position(); #3
 int length = heapBuf.readableBytes(); #4

 YourImpl.method(array, offset, length); #5

}
#1 Check if ByteBuf is backed by array
#2 Get reference to array
#3 Calculate offset of first byte in it
#4 Get amount of readable bytes
#5 Call method using array, offset, length as parameter

Accessing the array from a �nonheap� ByteBuf will result in an
UnsupportedOperationException. Because of this it�s always a good idea to check if the
ByteBuf is backed by an array with hasArray() as shown in listing 5.1. This pattern might
be familiar if you�ve worked with the JDK's ByteBuffer before.

DIRECT BUFFERS

Another ByteBuf implementation is the �direct� one. Direct means that it allocates the
memory directly, which is outside the �heap�. You won�t see its memory usage in your heap
space. You must take this into account when calculating the maximum amount of memory your
application will use and how to limit it, as the max heap size won�t be enough. Direct buffers on
the other side are optimal when it�s time to transfer data over a socket. In fact, if you use a
nondirect buffer, the JVM will make a copy of your buffer to a direct buffer internally before
sending it over the socket.

The down side of direct buffers is that they�re more expensive to allocate and de-allocate
compared to heap buffers. This is one of the reasons why Netty supports pooling, which makes
this problem disappear. Another possible down side can be that you�re no longer able to access
the data via the backing array, so you�ll need to make a copy of the data if it needs to work
with legacy code that requires this.

The following listing shows how you can get the data in an array and call your method even
without the ability to access the backing array directly.

Listing 5.2 Access data
ByteBuf directBuf = ...;
if (!directBuf.hasArray()) { #1
 int length = directBuf.readableBytes(); #2

 byte[] array = new byte[length]; #3
 directBuf.getBytes(array); #4
 YourImpl.method(array, 0, array.length); #5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

72

http://www.manning-sandbox.com/forum.jspa?forumID=857

}
#1 Check if ByteBuf not backed by array which will be false for direct buffer
#2 Get number of readable bytes
#3 Allocate new array with length of readable bytes
#4 Read bytes into array
#5 Call method that takes array, offset, length as parameter

As you can see it�s a bit more work and involves a copy operation. If you expect to access the
data and need to have it in an array, you may be better off using a heap buffer.

COMPOSITE BUFFERS

The last ByteBuf implementation you may be confronted with is the CompositeByteBuf.
This does exactly what its name says; it allows you to compose different ByteBuf instances
and provides a view over them. The good thing is you can also add and remove them on-the-
fly, so it�s kind of like a List. If you�ve ever worked with the JDK's ByteBuffer you�ve most
likely missed such a feature there. As the CompositeByteBuf is just a �view� over others, the
hasArray() method will return false because it may contain several ByteBuf instances of
both direct and nondirect types.

For example, a message could be composed of two parts: header and body. In a
modularized application, the two parts could be produced by different modules and assembled
later when the message is sent out. Also, you may use the same body all the time and just
change the header. So it would make sense here to not allocate a new buffer every time.

This would be a perfect fit for a CompositeByteBuf as no memory copy will be needed
and the same API could be used as with non-composite buffers.

Figure 5.2 shows how a CompositeByteBuf would be used to compose the header and
body.

Figure 5.2 CompositeBuf that holds a header and body.

In contrast if you�d used the JDK's ByteBuffer this would be impossible. The only way to
compose two ByteBuffers is to create an array that holds them or create a new
ByteBuffer and copy the contents of both of them to the newly created one. The following
listing shows these.

Listing 5.3 Compose legacy JDK ByteBuffer
// Use an array to composite them
 ByteBuffer[] message = new ByteBuffer[] { header, body };

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

73

http://www.manning-sandbox.com/forum.jspa?forumID=857

 // Use copy to merge both
 ByteBuffer message2 = ByteBuffer.allocate(
 header.remaining()+ body.remaining();
 message2.put(header);
 message2.put(body);
 message2.flip();

Both approaches shown in figure 5.3 have disadvantages: having to deal with an array won�t
allow you to keep the API simple if you want to support both. And, of course, there�s a
performance cost associated with this copying; it's simply not optimal.

But let�s see the CompositeByteBuf in action. The following listing gives an overview.

Listing 5.4 CompositeByteBuf in action
CompositeByteBuf compBuf = ...;
ByteBuf heapBuf = ...;
ByteBuf directBuf = ...;

compBuf.addComponent(heapBuf, directBuf); #1
.....
compBuf.removeComponent(0); #2

for (ByteBuf buf: compBuf) { #3
 System.out.println(buf.toString());
}

#1 Append ByteBuf instances to the composite
#2 Remove ByteBuf on index 0 (heapBuf here)
#3 Loop over all the composed ByteBuf

There are more methods in there, but I think you get the idea. The Netty API is clearly
documented so as you use other methods not shown, it'll be easy to understand what they do
by referring to the API docs.

Also, because of the nature of a CompositeBytebuf, you won�t be able to access a
backing array. It looks similar to what you saw for the native buffer and in the following listing.

Listing 5.5 Access data
CompositeBuf compBuf = ...;
if (!compBuf.hasArray()) { #1
 int length = compBuf.readableBytes(); #2

 byte[] array = new byte[length]; #3
 compBuf.getBytes(array); #4
 YourImpl.method(array, 0, array.length); #5

}
#1 Check if ByteBuf not backed by array which will be false for a composite buffer
#2 Get amount of readable bytes
#3 Allocate new array with length of readable bytes
#4 Read bytes into array
#5 Call method that takes array, offset, length as parameter

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

74

http://www.manning-sandbox.com/forum.jspa?forumID=857

As CompositeByteBuf is a sub-type of ByteBuf, you�re able to operate on the buffer as
usual but with the possibility for some extra operations.

You also may welcome that Netty will optimize read and write operations on the socket
whenever possible while using a CompositeByteBuf. This means that using gathering and
scattering doesn�t incur performance penalties when reading or writing to a socket or suffer
from the memory leak issues in the JDK's implementation. All of this is done in the core of
Netty itself so you don�t need to worry about it too much, but it can�t hurt to know that some
optimization is done under-the-hood.

A class such as the CompositeByteBuf doesn�t exist when using ByteBuffer. This is
just one thing that makes the buffer API more feature-rich than the buffer API provided by the
JDK as part of the java.nio package.

5.3 ByteBuf's byte operations
The ByteBuf offers many operations that allow modifying the content or just reading it. You�ll
learn quickly that it�s much like the JDK's ByteBuffer, but on steroids, as it offers a much
better user experience and performance.

5.3.1 Random access indexing
Like an ordinary primitive byte array, ByteBuf uses zero-based-indexing. This means the
index of the first byte is always 0 and the index of the last byte is always capacity � 1. For
example, I can iterate all the bytes of a buffer (see the following listing), regardless of its
internal implementation.

Listing 5.7 Access data

ByteBuf buffer = ...;
 for (int i = 0; i < buffer.capacity(); i ++) {
 byte b = buffer.getByte(i);
 System.out.println((char) b);
}

Be aware that index pased access will not advance the readerIndex or writerIndex. You
can advance it by hand by call readerIndex(index) and writerIndex(index) if needed.

5.3.2 Sequential access indexing
ByteBuf provides two pointer variables to support sequential read and write operations�
readerIndex for a read operation and writerIndex for a write operation, respectively.
Again, this is different from the JDK's ByteBuffer that has only one, so you need to flip()
to switch between read and write mode. Figure 5.3 shows how a buffer is segmented into three
areas by the two pointers.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

75

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 5.3 ByteBuf areas

#1 Segment that holds bytes that can be discarded as they were read before
#2 Segment that holds the actual readable content that was not read yet
#3 Segment that contains the left space of the buffer and so to which more bytes can be written

5.3.3 Discardable bytes
The discardable bytes segment contains the bytes that were already read by a read operation
and so may be discarded. Initially, the size of this segment is 0, but its size increases up to the
writerIndex as read operations are executed. This only includes �read� operations; �get�
operations do not move the readerIndex. The read bytes can be discarded by calling
discardReadBytes() to reclaim unused space.

Figure 5.4 shows what the segments of a ByteBuf look like before discardReadBytes()
is called.

Figure 5.4 Before discardReadBytes is called.

#1 Segment that holds bytes that can be discarded as they was read before
#2 Segment that holds the actual readable content that was not read yet
#3 Segment that contains the left space of the buffer and so to which more bytes can be written

As you can see, the discardable bytes segment contains some space that is ready for reuse.
This can be achieved by calling discardReadBytes().

Figure 5.5 shows how the call of discardReadBytes() will affect the segments.

Figure 5.5 After discardReadBytes is called

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

76

http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 Segment that holds the actual readable content that was not read yet. This starts now on index 0
#3 Segment that contains the left space of the buffer and so to which more bytes can be written. This
is now bigger as it growed by the space that was hold by the discardable bytes before

Note that there�s no guarantee about the content of writable bytes after calling
discardReadBytes(). The writable bytes won�t be moved in most cases and could even be
filled with completely different data depending on the underlying buffer implementation.

Also, you may be tempted to frequently call discardReadBytes() to provide the
ByteBuf with more writable space again. Be aware that discardReadBytes() will most
likely involve a memory copy as it needs to move the readable bytes (content) to the start of
the ByteBuf. Such an operation isn�t free and may affect performance, so only use it if you
need it and will benefit from it. Thus would be for example if you need to free up memory as
soon as possible.

5.3.4 Readable bytes (the actual content)
This segment is where the actual data is stored. Any operation whose name starts with read or
skip will get or skip the data at the current readerIndex and increase it by the number of
read bytes. If the argument of the read operation is also a ByteBuf and no destination index
is specified, the specified destination buffer's writerIndex is increased together.

If there's not enough content left, IndexOutOfBoundException is raised. The default
value of newly allocated, wrapped, or copied buffer's readerIndex is 0.

The following listing shows how to read all readable data.

Listing 5.8 Read data
 // Iterates the readable bytes of a buffer.
ByteBuf buffer = ...;

 while (buffer.readable()) {
 System.out.println(buffer.readByte());
 }

5.3.5 Writable bytes
This segment is an undefined space which needs to be filled. Any operation whose name starts
with write will write the data at the current writerIndex and increase it by the number of
written bytes. If the argument of the write operation is also a ByteBuf and no source index is
specified, the specified buffer's readerIndex is increased together.

If there's not enough writable bytes left, IndexOutOfBoundException is raised. The
default value of newly allocated buffer's writerIndex is 0.

The following listing shows an example that fills the buffer with random int values until it
runs out of space.

Listing 5.9 Write data
// Fills the writable bytes of a buffer with random integers.
ByteBuf buffer = ...;

 while (buffer.writableBytes() >= 4) {
 buffer.writeInt(random.nextInt());

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

77

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }

5.3.6 Clearing the buffer indexes
You can set both readerIndex and writerIndex to 0 by calling clear(). It doesn�t clear
the buffer�s content (for example, filling with 0) but clears the two pointers. Please note that
the semantics of this operation are different from the JDK�s ByteBuffer.clear().

Let�s look at its functionality. Figure 5.6 shows a ByteBuf with the three different segments.

Figure 5.6 Before clear() is called.

#1 Segment that holds bytes that can be discarded as they were read before
#2 Segment that holds the actual readable content that was not read yet
#3 Segment that contains the left space of the buffer and so to which more bytes can be written
As before, it contains three segments. You�ll see this change once clear() is called. Figure
5.7 shows the ByteBuf after clear() is used.

Figure 5.7 After clear() is called

#1 Segment is now as big as the capacity of the ByteBuf, so everything is writable

Compared to discardReadBytes(), the clear() operation is cheap, because it adjusts
pointers and doesn�t need to copy any memory.

5.3.7 Search operations
Various indexOf() methods help you locate an index of a value which meets a certain
criteria. Complicated dynamic sequential search can be done with ByteBufProcessor
implementations as well as simple static single-byte search.

If you�re decoding variable length data such as NULL-terminated string, you�ll find the
bytesBefore(byte) method useful. Let's imagine you've written an application, which has to
integrate with flash sockets, which uses NULL-terminated content. Using the bytesBefore()
method, you can easily consume data from Flash without manually readying every byte in the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

78

http://www.manning-sandbox.com/forum.jspa?forumID=857

data to check for NULL bytes. Without the ByteBufProcessor you would need to do all this
work by yourself. Also it is more efficient as it needs less �bound checks� during processing.

5.3.8 Mark and reset
As stated before, there are two marker indexes in every buffer. One is for storing
readerIndex and the other is for storing writerIndex. You can always reposition one of the
two indexes by calling a reset method. It works in a similar fashion to the mark and reset
methods in an InputStream except that there are no read limits.

Also, you can move them to an �exact� index by calling readerIndex(int) or
writerIndex(int). Be aware that trying to set the readerIndex or writerIndex to an
invalid position will cause an IndexOutOfBoundException.

5.3.9 Derived buffers
To create a view of an existing buffer, call duplicate(), slice(), slice(int, int),
readOnly(), or order(ByteOrder). A derived buffer has an independent readerIndex,
writerIndex, and marker indexes, but it shares other internal data representation the way a
NIO ByteBuffer does. Because it shares the internal data representation, it�s cheap to create
and is the preferred way if, for example, you need a �slice� of a ByteBuf in an operation.

If a fresh copy of an existing buffer is required, use the copy() or copy(int, int)
method instead. The following listing shows how to work with a slice of a ByteBuf.

Listing 5.10 Slice a ByteBuf
Charset utf8 = Charset.forName(“UTF-8“);
ByteBuf buf = Unpooled.copiedBuffer(“Netty in Action rocks!“, utf8); #1

ByteBuf sliced = buf.slice(0, 14); #2
System.out.println(sliced.toString(utf8); #3

buf.setByte(0, (byte) ’J’); #4
assert buf.get(0) == sliced.get(0); #5

#1 Create ByteBuf which holds bytes for given string
#2 Create new slice of ByteBuf which starts at index 0 and ends at index 14
#3 Contains �Netty in Action�
#4 Update byte on index 0
#5 Won�t fail as both ByteBuf share the same content and so modifications to one of them are visible
on the other too

Now let�s look at how to create a copy of a ByteBuf and how that differs from a slice. The
following listing shows how to work with a copy of a ByteBuf.

Listing 5.11 Copying a ByteBuf
Charset utf8 = Charset.forName(“UTF-8“);
ByteBuf buf = Unpooled.copiedBuffer(“Netty in Action rocks!“, utf8); #1

ByteBuf copy = buf.copy(0, 14); #2
System.out.println(copy.toString(utf8); #3

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

79

http://www.manning-sandbox.com/forum.jspa?forumID=857

buf.setByte(0, (byte) ’J’); #4
assert buf.get(0) != copy.get(0); #5

#1 Create ByteBuf which holds bytes for given string
#2 Create copy of ByteBuf which starts at index 0 and ends at index 14
#3 Contains �Netty in Action�
#4 Update byte on index 0
#5 Won�t fail as both ByteBuf does not share the same content and so modifications to one of them are
not shared

The API is the same, but how a modification affects the derived ByteBuf is different.
Use a slice whenever possible, and use copy only as needed. Creating a copy of the

ByteBuf is more expensive because it needs to do a memory copy.

5.3.10 Read/write operations
There are two main types of read/write operations:

 Index based get/set operations that set or get bytes on a given index.

 Read/write operations that either read bytes from the current index and increase them
or write to the current index and increase it.

Let�s review the relative operations first; I�ll mention only the most popular for now. For a
complete overview, refer to the API docs.

Table 5.1 shows the most interesting get operations that are used to access data on a given
index.

Table 5.1 Relative get operations

Name Description

getBoolean(int) Return the Boolean value on the given index.

getByte(int)

getUnsignedByte(int)
Return the (unsigned) byte value on the given index.

getMedium(int)

getUnsignedMedium(int)
Return the (unsigned) medium value on the given index.

getInt(int)

getUnsignedInt(int)
Return the (unsigned) int value on the given index.

getLong(int)

getUnsignedLong(int)
Return the (unsigned) int value on the given index.

getShort(int)

getUnsignedShort(int)
Return the (unsigned) int value on the given index.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

80

http://www.manning-sandbox.com/forum.jspa?forumID=857

getBytes(int, ...) Return the (unsigned) int value on the given index.

For most of these get operations there is a similar set operation. Table 5.2 shows these.

Table 5.2 Relative set operations

Name Description

setBoolean(int, boolean) Set the Boolean value on the given index.

setByte(int, int) Set byte value on the given index.

setMedium(int, int) Set the medium value on the given index.

setInt(int, int) Set the int value on the given index.

setLong(int, long) Set the long value on the given index.

setShort(int, int) Set the short value on the given index.

setBytes(int,...) Transfer the bytes to the given index to/from given resources.
You may have noticed that there are no unsigned versions of these methods. This is because
there isn�t a notion of it when setting values. Now that you know there are relative operations,
let�s see them in practice, as shown in the following listing.

Listing 5.12 Relative operations on the ByteBuf
Charset utf8 = Charset.forName(“UTF-8“);
ByteBuf buf = Unpooled.copiedBuffer(“Netty in Action rocks!“, utf8); #1
System.out.println((char) buf.getByte(0)); #2

// #3
int readerIndex = buf.readerIndex();
int writerIndex = buf.writerIndex();

buf.setByte(0, (byte) ’B’); #4
System.out.println((char) buf.getByte(0)); #5

// #6
assert readerIndex = buf.readerIndex();
assert writerIndex = buf.writerIndex();

#1 Create a new ByteBuf which holds the bytes for the given String
#2 Prints out the first char which is �N�
#3 Store the current readerIndex and writerIndex
#4 Update the byte on index 0 with the char �B�
#5 Prints out the first char which is �B� now as I updated it before
#6 Check that the readerIndex and writerIndex did not change which is true as relative operations never
modify the indexes.

In addition to the relative operations, there are also operations that act on the current
readerIndex or writerIndex. These operations are the ones that you mostly use to read

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

81

http://www.manning-sandbox.com/forum.jspa?forumID=857

from the ByteBuf as if it were a stream. The same is true for the write operations that are
used to �append� to a ByteBuf.

Table 5.3 shows the most-used read operations.

Table 5.3 Read operations

Name Description

readBoolean()
Reads the Boolean value on the current readerIndex and
increases the readerIndex by 1.

readByte()

readUnsignedByte()

Reads the (unsigned) byte value on the current readerIndex
and increases the readerIndex by 1.

readMedium()

readUnsignedMedium()

Reads the (unsigned) medium value on the current
readerIndex and increases the readerIndex by 3.

readInt()

readUnsignedInt()

Reads the (unsigned) int value on the current readerIndex
and increases the readerIndex by 4.

readLong()

readUnsignedLong()

Reads the (unsigned) int value on the current readerIndex
and increases the readerIndex by 8.

readShort()

readUnsignedShort()

Reads the (unsigned) int value on the current readerIndex
and increases the readerIndex by 2.

readBytes(int,int, ...)
Reads the value on the current readerIndex for the given
length into the given object. Also increases the readerIndex
by the length.

There is a write method for almost every read method. Table 5.4 shows these.

Table 5.4 Write operations

Name Description

writeBoolean(boolean)
Writes the Boolean value on the current writerIndex and
increases the writerIndex by 1.

writeByte(int)
Writes the byte value on the current writerIndex and
increases the writerIndex by 1.

writeMedium(int)
Writes the medium value on the current writerIndex and
increases the writerIndex by 3.

writeInt(int)
Writes the int value on the current writerIndex and
increases the writerIndex by 4.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

82

http://www.manning-sandbox.com/forum.jspa?forumID=857

writeLong(long)
Writes the long value on the current writerIndex and
increases the writerIndex by 8.

writeShort(int)
Writes the short value on the current writerIndex and
increases the writerIndex by 2.

writeBytes(int,…)
Transfers the bytes on the current writerIndex from given
resources.

Let�s see them in practice, as shown in the following listing.

Listing 5.13 Read/write operations on the ByteBuf
Charset utf8 = Charset.forName(“UTF-8“);
ByteBuf buf = Unpooled.copiedBuffer(“Netty in Action rocks!“, utf8); #1
System.out.println((char) buf.readByte()); #2

//
int readerIndex = buf.readerIndex(); #3
int writerIndex = buf.writerIndex(); #4

buf.writeByte((byte) ’?’); #5

// #6
assert readerIndex = buf.readerIndex();
assert writerIndex != buf.writerIndex();

#1 Create ByteBuf which holds bytes for given string
#2 Prints first char �N�
#3 Store current readerIndex and writerIndex
#4 Update byte on index 0 with char �B�
#5 Prints first char �B� that I updated
#6 Check readerIndex and writerIndex didn�t change

On #6, note that relative operations never modify the indexes. With a broad overview of the
methods that write or read values from a ByteBuf, under your belt, let�s take a look at a few
others.

5.3.11 Other useful operations
There are other useful operations that Ihaven�t mentioned yet, but they often come in handy,
depending on your use case. Table 5.5 gives an overview of them and explains what they do.

Table 5.5 Other useful operations

Name Description

isReadable() Returns true if at least one byte can be read.

isWritable() Returns true if at least one byte can be written.

readableBytes() Returns the number of bytes that can be read.

writablesBytes() Returns the number of bytes that can be written.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

83

http://www.manning-sandbox.com/forum.jspa?forumID=857

capacity()
Returns the number of bytes that the ByteBuf can hold. After
this it will try to expand again until maxCapacity() is
reached.

maxCapacity() Returns the maximal number of bytes the ByteBuf can hold.

hasArray() Returns true if the ByteBuf is backed by a byte array.

array()
Returns the byte array if the ByteBuf is backed by a byte
array, otherwise throws an
UnsupportedOperationException.

You may need to work with normal objects called POJOs. These need to be stored and retrieved
later. Often, it�s important to keep the order of the contained objects. For this purpose, Netty
provides another data container called MessageBuf.

5.4 ByteBufHolder
Often, you have an object that needs to hold bytes as the actual payload and also other
properties. For example, an object that represents an HTTP response is exactly like this. You
have properties, such as the status code, cookies, and so on, but also the actual
content/payload that�s represented as bytes.

As this situation is common, Netty provides an extra �abstraction� for it called
ByteBufHolder. The good thing is that this enables Netty to also make use of advanced
features such as buffer pooling as the ByteBuf that holds the data can also get allocated out
of a pool while still enabling Netty to release it automatically.

ByteBufHolder, in fact, has only a handful of methods that allows access to the data that
it holds and also makes use of reference counting. Table 5.7 shows the methods that it
provides (ignoring the ones that are declared in its super-type ReferenceCounted).

Table 5.7 ByteBufHolder operations

Name Description

data() Return the ByteBuf that holds the data.

copy()
Make a copy of the ByteBufHolder that does not share its
data (so the data is also copied).

If you want to implement a �message object� that stores its �payload/data� in a ByteBuf, it�s
always a good idea to make use of ByteBufHolder.

5.4.1 Netty's buffer utility classes
One of the difficulties of using the JDK's NIO API is the amount of "boilerplate" code that�s
required to perform seemingly simple tasks. Even though Netty's various Buf implementations

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

84

http://www.manning-sandbox.com/forum.jspa?forumID=857

are already easier to use, Netty goes even further by providing a set of utility classes which
makes creating and using the various buffers even easier. In this section I�ll look at three such
utility classes because they�ll likely be useful in your day-to-day use of Netty.

5.4.2 ByteBufAllocator�Allocate ByteBuf when needed
As mentioned before, Netty supports pooling for the various ByteBuf implementations. To
make this possible it provides an abstraction called ByteBufAllocator. As the name implies
it's responsible for allocating ByteBuf instances of the previously explained types. Whether
these are pooled or not is specific to the implementation but doesn�t change the way you
operate with it.

Let�s first look at the various operations ByteBufAllocator provides. Table 5.8 gives a
brief overview here.

Table 5.8 ByteBufAllocator methods

Name Description

buffer()

buffer(int);

buffer(int, int);

Return a ByteBuf that may be of type heap or direct
depend on the implementation.

heapBuffer()

heapBuffer(int)

heapBuffer(int, int)

Return a ByteBuf of type heap.

directBuffer()

directBuffer(int)

directBuffer(int, int)

Return a ByteBuf of type direct.

compositeBuffer()

compositeBuffer(int);

heapCompositeBuffer ()

heapCompositeBuffer(int);

directCompositeBuffer ()

directCompositeBuffer(int);

Return a CompositeByteBuf that may expand internally
if needed using a heap or direct buffer.

ioBuffer()
Return a ByteBuf that will be used for I/O operations
which is reading from the socket.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

85

http://www.manning-sandbox.com/forum.jspa?forumID=857

As you can see, these methods take some extra arguments which allow the user to specify the
initial capacity of the ByteBuf and the maximum capacity. You may remember that ByteBuf
is allowed to expand as needed. This is true until the maximum capacity is reached.

Getting a reference to the ByteBufAllocator is easy. You can obtain it either through
the channel (in theory, each channel can have another ByteBufAllocator) or through the
ChannelHandlerContext that is bound to the ChannelHandler from which you execute
your code. More on ChannelHandler and ChannelHandlerContext can be found in
chapter 6.

The following listing 5.6 shows both of the ways of obtaining a byte buffer allocator.

Listing 5.6 Obtain ByteBufAllocator reference
Channel channel = ...;
ByteBufAllocator allocator = channel.alloc(); #1
....

ChannelHandlerContext ctx = ...;
ByteBufAllocator allocator2 = ctx.alloc(); #2
...

#1 Get ByteBufAllocator from a channel
#2 Get ByteBufAllocator from a ChannelHandlerContext

Netty comes with two different implementations of ByteBufAllocator. One implementation
pools ByteBuf instances to minimize the allocation/de-allocation costs and keeps memory
fragmentation to a minimum. How exactly these are implemented is outside the scope of this
book, but let me note it�s based on the �jemalloc� paper and so uses the same algorithm as
many operating systems use to efficiently allocate memory.

The other implementation does not pool ByteBuf instances at all and returns a new
instance every time. Netty uses the PooledByteBufAllocator (which is the pooled
implementation of ByteBufAllocator) by default but this can be changed easily by either
changing it through the ChannelConfig or specifying a different one when bootstrapping the
server. More details can be found in chapter 9 �Bootstrap your application�.

5.4.3 Unpooled�Buffer creation made easy
There may be situations where you can�t access the previously explained ByteBuf because
you don�t have a reference to the ByteBufAllocator. For this use case Netty provides a
utility class called Unpooled. This class contains static helper methods to create unpooled
ByteBuf instances.

Let�s have a quick peek at the provided methods. Explaining all of them would be too much
for this section, so please refer to the API docs for an overview on all of them.

Table 5.9 shows the most used methods of Unpooled.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

86

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 5.9 Unpooled helper class

Name Description

buffer()

buffer(int)

buffer(int, int)

Returns an unpooled ByteBuf of type heap.

directBuffer()

directBuffer(int)

directBuffer(int, int)

Returns an unpooled ByteBuf of type direct.

wrappedBuffer() Returns a ByteBuf, which wraps the given data.

copiedBuffer() Returns a ByteBuf, which copies the given data and uses it .

This Unpooled class also makes it easier to use the Netty's buffer API outside Netty, which
you may find useful for a project that could benefit from a high-performing extensible buffer
API but that does not need other parts of Netty.

5.4.4 ByteBufUtil�Small but useful
Another useful class is the ByteBufUtil class. This class offers static helper methods, which
are helpful when operating on a ByteBuf. One of the main reasons to have these outside the
Unpooled class mentioned before is that these methods are generic and aren�t dependent on a
ByteBuf being pooled or not.

Perhaps the most valuable is the hexdump() method which is provided as a static method
like the others in this class. What it does is print the contents of the ByteBuf in a hex
presentation. This can be useful in a variety of situations. One is to �log� the contents of the
ByteBuf for debugging purposes. The hex value can easily be converted back to the actual
byte representation. You may wonder why not print the bytes directly. The problem here is that
this may result in some difficult-to-read log entries. A hex string is much more user friendly.

In addition to this the class also provides methods to check equality of ByteBuf
implementations and others that may be of use when you start to implement your own
ByteBuf.

5.5 Summary
In this chapter you learned about the data containers that are used inside of Netty and why
these are more flexible in their usage than what you would find in the JDK.

The chapter also highlighted how you can use the different data containers and what
operations are possible, and explained what operations are more �expensive� then others and
what methods to use for some use cases.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

87

http://www.manning-sandbox.com/forum.jspa?forumID=857

In the next chapter I�ll focus on ChannelHandler, which lets you write your own logic to
process data. This ChannelHandler will make heavy use of the data containers described in
this chapter. This will help you better understand the use cases and also show why these are
important.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

88

http://www.manning-sandbox.com/forum.jspa?forumID=857

6
ChannelHandler

This chapter covers

 ChannelPipeline

 ChannelHandlerContext

 ChannelHandler

 Inbound versus outbound

Accepting connections or creating them is only one part of your application. While it�s true that
these tasks are important, there�s another aspect that�s often more complex and needs more
code to write. This is the processing of incoming data and outgoing data.

Netty provides you with a powerful approach to archive exactly this. It allows the user to
hook in ChannelHandler implementations that process the data. What makes
ChannelHandler even more powerful is that you can �chain� them so each
ChannelHandler implementation can fulfill small tasks. This helps you write clean and
reusable implementations.

But processing data is only one thing you can do with ChannelHandler. You can also
suppress I/O operations, which would be for example a write request (you wil see more
examples later in this chapter). All of this can be done on-the-fly which makes it even more
powerful.

6.1 ChannelPipeline
A ChannelPipeline is a list of ChannelHandler instances that handle or intercept inbound
and outbound operations of a channel. ChannelPipeline offers an advanced form of the
interception filter pattern, giving a user full control over how an event is handled and how the
ChannelHandlers in the ChannelPipeline interact with each other.

For each new channel, a new ChannelPipeline is created and attached to the channel.
Once attached, the coupling between the channel and the ChannelPipeline is permanent;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

89

http://www.manning-sandbox.com/forum.jspa?forumID=857

the channel cannot attach another ChannelPipeline to it or detach the current
ChannelPipeline from it. All of this is handled for you; you don�t need to take care of this.

Figure 6.1 describes how ChannelHandlers in a ChannelPipeline typically process
I/O. An I/O operation can be handled by either a ChannelInboundHandler or a
ChannelOutboundHandler and be forwarded to the closest handler by calling either one of
the methods defined in the ChannelInboundInvoker interface for inbound I/O or by one of
the methods defined in the ChannelOutboundInvoker interface for outbound I/O.
ChannelPipeline extends both of them.

Figure 6.1 ChannelPipeline

As shown in figure 6.1 a ChannelPipeline is mainly a list of ChannelHandlers. If an
inbound I/O event is triggered it�s passed from the beginning to the end of the
ChannelPipeline. For outbound I/O events it begins at the end of the ChannelPipeline
and process to the start. The ChannelPipeline itself knows if a ChannelHandler can
handle the event by checking its type. If it can�t handle it, it skips the ChannelHandler and
uses the next matching.

Modifications on the ChannelPipeline can be done on-the-fly, which means you can
add/remove/replace ChannelHandler even from within another ChannelHandler or have it
remove itself. This allows writing flexible logic, such as multiplexer, but I�ll go into more detail
later in this chapter.

For now, let�s look at how you can modify a ChannelPipeline.

Table 6.1 Methods to modify a ChannelPipeline

Name Description

addFirst(…) Add a ChannelHandler to the ChannelPipeline.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

90

http://www.manning-sandbox.com/forum.jspa?forumID=857

addBefore(…)

addAfter(…)

addLast(…)

remove(…)
Remove a ChannelHandler from the
ChannelPipeline.

replace(…)

Rplace a ChannelHandler in the ChannelPipeline
with another ChannelHandler.

The following listing shows how you can use these methods to modify the ChannelPipeline.

Listing 6.1 Modify the ChannelPipeline
ChannelPipeline pipeline = ..;
FirstHandler firstHandler = new FirstHandler(); #1
pipeline.addLast(“handler1“, firstHandler); #2
pipeline.addFirst(“handler2“, new SecondHandler()); #3
pipeline.addLast(“handler3“, new ThirdHandler()); #4

pipeline.remove(“handler3“); #5
pipeline.remove(firstHandler); #6

pipeline.replace(“handler2“, “handler4“, new FourthHandler()); #7
#1 Create instance of FirstHandler
#2 Add FirstHandler to ChannelPipeline
#3 Add SecondHandler instance to ChannelPipeline using first position. This means it will be before the
already existing FirstHandler
#4 Add ThirdHandler to ChannelPipeline on the last position
#5 Remove ThirdHandler by using name it was added with
#6 Remove FirstHandler by using reference to instance
#7 Replace SecondHandler which was added with handler2 as name by FourthHandler and add it with
name handler4

As you can see, modifying the ChannelPipeline is easy and allows you to add, remove,
replace ChannelHandler on demand.

ChannelHandler execution and blocking

Normally each ChannelHandler that is added to the ChannelPipeline will process the event that
is passed through it in the IO-Thread, which means you MUST NOT block as otherwise you
block the IO-Thread and so affect the overall handling of IO.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

91

http://www.manning-sandbox.com/forum.jspa?forumID=857

Sometimes it�s needed to block as you may need to use legancy API�s which only offers a
blocking API. For example this is true for JDBC. For exactly this use-case Netty allows to pass
a EventExecutorGroup to each of the ChannelPipeline.add* methods. If a custom
EventExecutorGroup is passed in the event will be handled by one oft he EventExecutor
contained in this EventExecutorGroup and so �moved�. A default implementation which is
called DefaultEventExecutorGroup comes as part of Netty.

In addition to the operations that allow you to modify the ChannelPipeline there are
also operations that let you access the ChannelHandler implementations that were added as
well as check if a specific ChannelHandler is present in the ChannelPipeline.

Table 6.2 Get operations on ChannelPipeline

Name Description

get(…)

There are a few get(…) operations provided by the ChannelPipeline.
These allow you to retrieve either the ChannelHandler or the
ChannelHandlerContext, which was created and assigned to the
ChannelHandler.

context(…)
Return the ChannelHandlerContext bound to the
ChannelHandler.

contains(…) Check if a ChannelHandler exists in the ChannelPipeline for the
given name/instance.

names()

iterator()

Return the names or a reference to all the added ChannelHander of the
ChannelPipeline.

As ChannelPipeline extends ChannelInboundInvoker and ChannelOutboundInvoker,
it exposes additional methods for invoking inbound and outbound operations.

Table 6.3 lists all inbound operations that are exposed, as defined in the
ChannelInboundInvoker interface. In addition to ChannelPipeline,
ChannelHandlerContext extends ChannelInboundInvoker and exposes those.

Table 6.3 Inbound operations on ChannelPipeline

Name Description

fireChannelRegistered()

This results in having the
channelRegistered(ChannelHandlerContext)
method called of the next ChannelInboundHandler in
the ChannelPipeline.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

92

http://www.manning-sandbox.com/forum.jspa?forumID=857

fireChannelUnregistered()

This results in having the
channelUnregistered(ChannelHandlerContext
) method called of the next ChannelInboundHandler in
the ChannelPipeline.

fireChannelActive()

This results in having the
channelActive(ChannelHandlerContext) method
called of the next ChannelInboundHandler in the
ChannelPipeline.

fireChannelInactive()

This results in having the
channelInactive(ChannelHandlerContext) method
called of the next ChannelInboundHandler in the
ChannelPipeline.

fireExceptionCaught(…)

This results in having the
exceptionCaught(ChannelHandlerContext,
Throwable) method called of the next ChannelHandler
in the ChannelPipeline.

fireUserEventTriggered(…)

This results in having the
userEventTriggered(ChannelHandlerContext,
Object) method call the next
ChannelInboundHandler contained in the
ChannelPipeline.

fireChannelRead(….)

This results in having the
channelRead(ChannelHandlerContext, Object
msg) method called of the next
ChannelInboundHandler in the ChannelPipeline.

fireChannelReadComplete()

This results in having the
channelReadComplete(ChannelHandlerContext)
method called of the next ChannelStateHandler in the
ChannelPipeline.

These operations are mainly useful for notifying the ChannelInboundHandlers in the
ChannelPipeline and so handle various events.

But handling inbound events is only half of the story. You also need to trigger and handle
outbound events which will cause some action on the underlying socket.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

93

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 6.4 lists all outbound operations that are exposed, as these are defined in the
ChannelOutboundInvoker interface. In addition to ChannelPipeline,
ChannelHandlerContext and Channel extend ChannelOutboundInvoker .

Table 6.4 Outbound operations on ChannelPipeline

Method name Description

bind(…)
Requests to bind the Channel to a local address. This will call the
bind(ChannelHandlerContext, SocketAddress, ChannelPromise)
method of the next ChannelOutboundHandler in the ChannelPipeline.

connect(…)

Requests to connects the Channel to a remote address. This will call the
connect(ChannelHandlerContext, SocketAddress,
ChannelPromise) method of the next ChannelOutboundHandler in the
ChannelPipeline.

disconnect(…)
Requests to disconnect the Channel. This will call the
disconnect(ChannelHandlerContext, ChannelPromise) method of
the next ChannelOutboundHandler in the ChannelPipeline.

close(…)
Requests to close the Channel. This will call the
close(ChannelHandlerContext, ChannelPromise) method of the
next ChannelOutboundHandler in the ChannelPipeline.

deregister(…)
Requests to deregister the Channel its EventLoop. This will call the
deregister(ChannelHandlerContext, ChannelPromise) method of
the next ChannelOutboundHandler in the ChannelPipeline.

flush(…)
Requests to flush all pending writes of the Channel. This will call the
flush(ChannelHandlerContext) method of the next
ChannelOutboundHandler in the ChannelPipeline.

write()

Requests to write the given message to the Channel. This will call the
write(ChannelHandlerContext, Object msg, ChannelPromise)
method of the next ChannelOutboundHandler in the ChannelPipeline.

Be aware this will not write the message to the underlying Socket, but only queue it.
For have it written to the actual Socket yet need to call flush(..) or use
writeAndFlush(…).

writeAndFlush(…) Shortcut for calling write(…) and flush(…).

read()

Requests to read more data from the Channel. This will call the
read(ChannelHanlderContext) method of the next
ChannelOutboundHandler in the ChannelPipeline.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

94

http://www.manning-sandbox.com/forum.jspa?forumID=857

6.2 ChannelHandlerContext
Each time a ChannelHandler is added to a ChannelPipeline, a new
ChannelHandlerContext is created and assigned. The ChannelHandlerContext allows
the ChannelHandler to interact with other ChannelHandler implementations and at the
end with the underlying transport, which are part of the same ChannelPipeline.

The ChannelHandlerContext never changes for an added ChannelHandler so it�s safe
to get cached.

The ChannelHandlerContext does implement ChannelInboundInvoker and
ChannelOutboundInvoker. It has many methods that are also present on the Channel or
the ChannelPipeline itself. The difference is that if you call them on the Channel or
ChannelPipeline they always flow through the complete ChannelPipeline. In contrast, if
you call a method on the ChannelHandlerContext, it starts at the current position and
notify the closes ChannelHandler in the ChannelPipeline that can handle the event.

6.2.1 Notify the next ChannelHandler
You can notify the closest handler in the same ChannelPipline by calling one of the various
methods listed in ChannelInboundInvoker and ChannelOutboundInvoker. Where the
notification starts depends on how you set up the notification.

Figure 6.2 shows how the ChannelHandlerContext belongs to the ChannelHandler
and binds it to the ChannelPipeline.

Figure 6.2 ChannelPipeline, ChannelHandlerContext and Channel

#1 Channel that ChannelPipeline is bound to
#2 ChannelPipeline bound to channel and holds added ChannelHandler instances
#3 ChannelHandler that is part of ChannelPipeline
#4 ChannelHandlerContext created while adding ChannelHandler to ChannelPipeline

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

95

http://www.manning-sandbox.com/forum.jspa?forumID=857

Now if you�d like to have the event flow through the whole ChannelPipeline, there are two
different ways of doing so:

 Invoke methods on the Channel.

 Invoke methods on the ChannelPipeline.

Both methods let the event flow through the whole ChannelPipeline. Whether it begins at
the start or at the end mainly depends on the nature of the event. If it�s an inbound event, it
begins at the start, and if it�s an outbound event it begins at the end.

The following listing shows how you can pass a write event through the ChannelPipeline
starting at the end (as it�s an outbound operation).

Listing 6.2 Events via Channel
ChannelHandlerContext ctx = ..;
Channel channel = ctx.channel(); #A
channel.write(Unpooled.copiedBuffer(“Netty in Action“,
 CharsetUtil.UTF_8)); #B

#A Get reference of channel that belongs to ChannelHandlerContext
#B Write buffer via channel

The message flows through the entire ChannelPipeline. As mentioned before, you can also
do the same via the ChannelPipeline. The following listing shows this.

Listing 6.3 Events via ChannelPipeline
ChannelHandlerContext ctx = ..;
ChannelPipeline pipeline = ctx.pipeline(); #A
pipeline.write(Unpooled.copiedBuffer(“Netty in Action“,
 CharsetUtil.UTF_8)); #B

#A Get reference of ChannelPipeline that belongs to ChannelHandlerContext
#B Write buffer via ChannelPipeline

The message flows through the entire ChannelPipeline. Each operation (listings 6.2 and
6.3) is equal in terms of event flow. You should also notice that the Channel and the
ChannelPipeline are accessible via the ChannelHandlerContext.

Figure 6.3 shows the flow of the event of a notification that was triggered by either the
Channel or the ChannelPipeline.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

96

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 6.3 Notify via the Channel or the ChannelPipeline

#1 Event passed to first ChannelHandler in ChannelPipeline
#2 ChannelHandler passes event to next in ChannelPipeline using assigned ChannelHandlercontext
#3 ChannelHandler passes event to next in ChannelPipeline using assigned ChannelHandlercontext

There may be situations where you want to start a specific position of the ChannelPipeline
and don�t want to have it flow through the whole ChannelPipeline, such as:

 To save the overhead of passing the event through extra ChannelHandlers that are
not interested in it.

 To exclude some ChannelHandlers.

In this case you can notify using the ChannelHandlerContext of the ChannelHandler
that�s your preferred starting point. Be aware that it executes the next ChannelHandler to
the used ChannelHandlerContext and not the one that belongs to the used
ChannelHandlerContext.

Listing 6.4 shows how this can be done by directly using ChannelHandlerContext for the
operation.

Listing 6.4 Events via ChannelPipeline
ChannelHandlerContext ctx = ..; #1
ctx.write(Unpooled.copiedBuffer(“Netty in Action“, CharsetUtil.UTF_8)); #2

#1 Get reference of ChannelHandlerContext
#2 Write buffer via ChannelHandlerContext.

The message starts to flow through the ChannelPipeline by the next ChannelHandler to
the ChanneHandlerContext In that case the event flow would start the next
ChannelHandler to the used ChannelHandlerContext.

Figure 6.4 shows the event flow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

97

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 6.4 Event flow for operations triggered via the ChannelHandlerContext

#1 Event passed to specific ChannelHandler usingChannelHandlerContext
#2 Event gets passed
#3 Move out of ChannelPipeline as no ChannelHandlers remain

As you can see, it now starts at a specific ChannelHandlerContext and skips all
ChannelHandlers before it. Using the ChannelHandlerContext for operations is a
common pattern and the most used if you call operations from within a ChannelHandler
implementation.

You can also use the ChannelHandlerContext from outside, because it�s thread-safe.

6.2.2 Modify ChannelPipeline
You can access the ChannelPipeline your ChannelHandler belongs to by calling the
pipeline() method. A nontrivial application could insert, remove, or replace
ChannelHandlers in the ChannelPipeline dynamically in runtime.

NOTE You can keep the ChannelHandlerContext for later use, such as triggering an
event outside the handler methods, even from a different Thread.

The following listing shows how you can store the ChannelHandlerContext for later use and
then use it even from another thread.

Listing 6.5 ChannelHandlerContext usage
public class WriteHandler extends ChannelHandlerAdapter {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

98

http://www.manning-sandbox.com/forum.jspa?forumID=857

 private ChannelHandlerContext ctx;

 @Override
 public void handlerAdded(ChannelHandlerContext ctx) {
 this.ctx = ctx; #A
 }

 public void send(String msg) { #B
 ctx.write(msg);
 }
}

#A Store reference to ChannelHandlerContext for later use
#B Send message using previously stored ChannelHandlerContext

Please note that a ChannelHandler instance can be added to more than one
ChannelPipeline if it�s annotated with the @Sharable. This means that a single
ChannelHandler instance can have more than one ChannelHandlerContext, and
therefore the single instance can be invoked with a different ChannelHandlerContext.

If you try to add a ChannelHandler to more then one ChannelPipeline that is not
annotated with @Sharable an exception is thrown. Be aware that once you annotate a
ChannelHandler with @Sharable it must be safe to use from different threads and also be
safe to use with different channels (connections) at the same time. Let�s look at how it should
be used. The following listing shows the correct use of the @Sharable annotation.

Listing 6.6 Valid usage of @Sharable

@Sharable #A
public class SharableHandler extends ChannelInboundHandlerAdapter {

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 System.out.println(“Channel read message “ + msg); #B
 ctx.fireChannelRead(msg);
 }

}
#A Annotate with @Sharable
#B Log method call and forward to next ChannelHandler

The use of @Sharable is valid here, as the ChannelHandler doesn�t use any fields to store
data and so is �stateless�.

There are also bad uses of @Sharable, as shown in the following listing.

Listing 6.7 Invalid usage of @Sharable

@Sharable #1
public class NotSharableHandler extends ChannelInboundHandlerAdapter {
 private int count;

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 count++; #2

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

99

http://www.manning-sandbox.com/forum.jspa?forumID=857

 System.out.println(“channelRead(...) called the “
 + count + “ time“); #3
 ctx.fireChannelRead(msg();
 }

}
#1 Annotate with @Sharable
#2 Increment the count field
#3 Log method call and forward to next ChannelHandler

Why is the use of @Sharable wrong here? It�s easy to guess once you look at the code. The
problem is that we�re using a field to hold the count of the method calls here. As soon as you
add the same instance of the NotSharableHandler to the ChannelPipeline you get bad
side effects, such as the count field being accessed and modified by different connections (and
possible threads) now.

The rule of thumb is to use @Sharable only if you�re sure that you can reuse the
ChannelHandler on many different channels.

Why share a ChannelHandler ?

You may wonder why you want to even try to share a ChannelHandler and so annotate it with
@Sharable, but there are some situation where it can make sense.

First off if you can share it you will need to create less Object which the Garbage Collector
needs to recycle later. An other use case would be that you want to mantain some global
statistics in the ChannelHandler which are updated by all Channels (like concurrent connection
count).

6.3 The state model
Netty has a simple but powerful state model that maps perfectly to the
ChannelInboundHandler methods. We�ll look at ChannelInboundHandler later in the
chapter. There are four different states as shown in table 6.5.

Table 6.5 The lifecycle states of a channel

State Description

channelUnregistered
The channel was created, but it isn�t registered to its
EventLoop.

channelRegistered The channel is registered to its EventLoop.

channelActive
The channel is active, which means it�s connected to its remote
peer. It�s now possible to receive and send data.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

100

http://www.manning-sandbox.com/forum.jspa?forumID=857

channelInactive The channel isn�t connected to the remote peer.

The state of the Channel changes during its lifetime, so state changes are triggered. Typically
you see four state changes during the lifetime of the Channel, as shown in figure 6.5.

Figure 6.5 State model

In a more advanced scenario you may also see additional state changes. This is because a user
is allowed to unregister the Channel from the EventLoop by hand to pause event execution
of it and then later re-register it again.

In such a case you�d see more than one channelRegistered and
channelUnregistered state change. You only ever have one state change for
channelActive and channelInactive, because a channel can only be used for one
connection lifetime; after this it needs to be recycled. If you want to reconnect, you need to
create another one.

Figure 6.6 shows the state changes if a user deregisters a channel from an EventLoop and
later reregisters it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

101

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 6.6 Advanced State Model

You�ll learn more about the operations that can be executed on a ByteBuf in a later section;
for now, keep this in mind while we review the different types of ByteBuf that you�ll most
likely use.

6.4 ChannelHandlers and their types
Netty supports intercept operation or reacting on state changes via ChannelHandler. This
makes it quite easy to write your custom processing logic in a reusable way.

There are two different types of ChannelHandlers that Netty supports, as shown in table
6.6.

Table 6.6 ChannelHandler types

Type Description

Inbound Handler
Processes inbound data (received data) and state changes of
all kinds

Outbound Handler
Processes outbound data (to-be-sent data) and allows to
incercept all kind of operations

I�ll discuss each type, but let�s start with the base interface for all of them.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

102

http://www.manning-sandbox.com/forum.jspa?forumID=857

6.4.1 ChannelHandler�the parent of all
Netty uses a well-defined type-hierarchy to represent the different handler types. The parent of
all of them is the ChannelHandler. It provides lifecycle operations that are called after a
ChannelHandler is added or removed from its ChannelPipeline.

Table 6.7 ChannelHandler methods

Type Description

handlerAdded(…)

handlerRemoved(…)

Lifecycle methods that get called during adding/removing the
ChannelHandler from the ChannelPipeline.

exceptionCaught(…)
Called If an error happens during processing in the
ChannelPipeline.

Each of the listed methods in table 6.7 takes a ChannelHandlerContext as a parameter
when it�s called. This ChannelHandlerContext is automatically created for each
ChannelHandler that is added to the ChannelPipeline. The ChannelHandlerContext
is bound to the ChannelHandler, ChannelPipeline, and Channel itself.

The ChannelHandlerContext allows you to safely store and retrieve values, which are
local for the Channel. Please refer to the section about ChannelHandlerContext for more
information about it and what you can do with it.

Netty provides a skeleton implementation for ChannelHandler called
ChannelHandlerAdapter. This provides base implementations for all of its methods so you
can implement (override) only the methods you�re interested in. Basically what it does is
forward the �event� to the next ChannelHandler in the ChannelPipeline until the end is
hit.

6.4.2 Inbound handlers
Inbound handlers handle inbound events and state changes. These are the right ones if you
want to react to anything that matches this criterion. In this section, we�ll explore the different
ChannelHandler subtypes that allow you to hook in the inbound logic.

CHANNELINBOUNDHANDLER

The ChannelInboundHandler provides methods that are called once the Channel state
changes or data was recieved. These methods map to the channel state model explained in
detail in section 6.3. Table 6.8 lists the ChannelInboundHandler methods.

Table 6.8 ChannelInboundHandler methods

Type Description

channelRegistered(…)
Invoked once a Channel was registered to its
EventLoop and is now able to handle I/O.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

103

http://www.manning-sandbox.com/forum.jspa?forumID=857

channelUnregistered(…)
Invoked once a Channel was deregistered from its
EventLoop and does not handle any I/O.

channelActive(…)
Invoked once a Channel is active which means the
Channel is connected/bound and ready.

channelInactive(…)
Invoked once a Channel change from active mode
and isn�t connected to its remote peer anymore.

channelReadComplete(…)
Invoked once a read operation on the Channel
completed.

channelRead(…)
Invoked if there is something read to read from the
inbound buffer.

userEventTriggered(…)
Invoked if the user triggered an event with some
custom object.

Every one of these methods is a counterpart of a method that can be invoked on the
ChannelInboundInvoker, which is extended by ChannelHandlerContext and
ChannelPipeline.

ChannelInboundHandler is a subtype of ChannelHandler and also exposes all of its
methods.

Netty provides a skeleton implementation for ChannelInboundHandler implementations
called ChannelInboundHandlerAdapter. This provides base implementations for all of its
methods and allows you to implement (override) only the methods you�re interested in. All of
these methods� implementations, by default, forward the event to the next
ChannelInboundHandler in the ChannelPipeline by calling the same method on the
ChannelHandlerContext.

Important to note is that the ChannelInboundHandler which handles received messages
and so @Override the channelRead(…) method is responsible to release resources. This is
especially important as Netty uses pooled resources for ByteBuf and so if you forgot to
release the resource you will end up with a resource leak.

Listing 6.8 Handler to discard data
@Sharable
public class DiscardHandler extends ChannelInboundHandlerAdapter { #1

 @Override
 public void channelRead(ChannelHandlerContext ctx,
 Object msg) {
 ReferenceCountUtil.release(msg); #2

 }

}
#1 Extend ChannelInboundHandlerAdapter

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

104

http://www.manning-sandbox.com/forum.jspa?forumID=857

#2 Discard received message by pass it to ReferenceCountUtil.release(�)

Missing to pass the message to ReferenceCountUtil.release(�) will have the effect of creating a
resource leak.

Fortunately Netty will log resources which was missed to be released with WARN loglevel, so
it should be quite easy for you to figure out when you missed to do so.

As releasing the resources by hand can be cumbersome there is also
SimpleChannelInboundHandler, which will take care of it for you. This way you will not
need to care about it at all. The only important thing here is to remember that if you use
SimpleChannelInboundHandler, it will release the message once it was processed and so
you MUST NOT store a reference to it for later usage.

So how what this change the previous shown example? Listing 6.9 shows the same
implementation but with the use of SimpleChannelInboundHandler.

Listing 6.9 Handler to discard data
@Sharable
public class SimpleDiscardHandler
 extends SimpleChannelInboundHandler<Object> {
#1

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 Object msg) {
 // No need to do anything special #2

 }

}
#1 Extend SimpleChannelInboundHandler
#2 Discard received message but no need for any release of resources

If you need to be notified about other state changes you could override one of the other
methods that are part of the handler.

Often you may want to decode bytes to a custom message type, and you may be tempted
to implement either ChannelInboundHandler or extend
ChannelInboundhandlerAdapter. But hold on a second, there�s an even better solution to
this problem. Those kinds of functionality are easily implemented using the codec framework,
which I�ll explain later in the chapter. For now, let�s finish reviewing the ChannelHandler.

If you use ChannelInboundHandler, ChannelInboundHandlerAdapter or
SimpleChannelInboundhandler depends on your needs. Most of the times you use
SimpleChannelInboundHandler in the case of handling messages and
ChannelInboundHandlerAdapter for other inbound events / state changes.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

105

http://www.manning-sandbox.com/forum.jspa?forumID=857

Inbound Message handling and reference counting

As you may remember from the previous chapter Netty uses reference counting to handle
pooled ByteBuf�s. Thus it is important to make sure the reference count is adjusted after a
ByteBuf is completly processed.

Because of this it is quite important to understand how ChannelOutboundHandlerAdapter
differs from SimpleChannelInboundHandler. ChannelInboundHandlerAdapter does not call
�release� on the message once it was passed to channelRead(...) and so its the responsibility
of the user to do so if the message was consumed. SimpleChannelInboundHandler is different
here as it automatically release a message after each channelRead(...) call, and thus expect
your code to either consume the message or call retain() on it if you want to use it after the
method returns.

Not correctly releasing a message will produce a memory leak, lucky enough Netty will by
default log a message if this happens.

CHANNELINITIALIZER

There�s one slightly modified ChannelInboundHandler that deserves more attention:
ChannelInitializer. It does exactly what its name states. It allows you to init the
Channel once it�s registered with its EventLoop and ready to process I/O.

The ChannelInitializer is mainly used to set up the ChannelPipeline for each
Channel that is created. This is done as part of the bootstrapping (see chapter 9 for a deeper
look). For now, let�s remember that there�s an extra ChannelInboundHandler for that.

6.4.3 Outbound handlers
Now that you�ve had a look at how ChannelHandler allows you to hook into inbound
operations and data, it�s time to look at those ChannelHandler implementations that allow
you the same for outbound operations and data. This section shows you all of them.

CHANNELOUTBOUNDHANDLER

The ChannelOutboundHandler provides methods that are called when outbound operations
are requested. These are the methods listed in the ChannelOutboundInvoker interface
that�s extended by Channel, ChannelPipeline, and ChannelHandlerContext.

What makes it powerful is the ability to implement a ChannelOutboundHandler and
defer an operation on request. This opens some powerful and flexible ways to handle requests.
For example, you could defer flush operations once nothing should be written to the remote
peer and pick them up later once it�s allowed again.

Table 6.9 shows all the methods that are supported.

Table 6.9 ChannelOutboundHandler methods

Type Description

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

106

http://www.manning-sandbox.com/forum.jspa?forumID=857

bind(…)
Invoked once a request to bind the Channel to a local address
is made.

connect(…)
Invoked once a request to connect the Channel to the remote
peer is made.

disconnect(…)
Invoked once a request to disconnect the Channel from the
remote peer is made.

close(…) Invoked once a request to close the Channel is made

deregister(…)
Invoked once a request to deregister the Channel from its
EventLoop is made.

read(…)
Invoked once a request to read more data from the Channel
is made.

flush(…)
Invoked once a request to flush queued data to the remote peer
through the Channel is made.

write(…)
Invoked once a message should be written through the
Channel to the remote peer is made.

As shown in the hierarchy, ChannelOutboundHandler is a subtype of ChannelHandler and
exposes all of its methods.

Allmost all of the methods take a ChannelPromise as an argument that MUST be notified
once the request should stop to get forwarded through the ChannelPipeline.

Netty provides a skeleton implementation for ChannelOutboundHandler
implementations called ChannelOutboundHandlerAdapter. This provides base
implementations for all of its methods and allows you to implement (override) only the
methods you�re interested in. All these method implementations, by default, forward the event
to the next ChannelOutboundHandler in the ChannelPipeline by calling the same
method on the ChannelHandlerContext.

Here the same is true as for the ChannelInboundHandler. If you handle a write
operation and discard a message it�s you responsible to release it probably.

Now let�s look at how you could make use of this in practice. The following listing shows an
implementation that discarded all written data.

Listing 6.10 Handler to discard outbound data
@Sharable
public class DiscardOutboundHandler
 extends ChannelOutboundHandlerAdapter { #1

 @Override
 public void write(ChannelHandlerContext ctx,
 Object msg, ChannelPromise promise) {
 ReferenceCountUtil.release(msg);

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

107

http://www.manning-sandbox.com/forum.jspa?forumID=857

#2
 promise.setSuccess(); #3

 }

}
#1 Extend ChannelOutboundHandlerAdapter
#2 Release resource by using ReferenceCountUtil.release(�)
#3 Notify ChannelPromise that data handled

It�s important to remember to release resources and notify the ChannelPromise. If the
ChannelPromise is not notified it may lead to situations where a ChannelFutureListener is not
notified about a handled message.

Outbound Message handling and reference counting

It�s the responsiblity of the user to call ReferenceCountUtil.release(message) if the message is
consumed and not passed to the next ChannelOutboundHandler in the ChannelPipleline. Once
the message is passed over to the actual Transport it will be released automatically by it once
the message was written or the Channel was closed.

From this examples you should be able to see how the ChannelHandler implementation and
all of its associated features make using Netty easier and more efficient.

6.5 Summary
In this chapter you got an in-depth look into how Netty allows hooking into data processing
with its ChannelHandler implementation. The chapter shows how ChannelHandlers are
chained and how the ChannelPipeline uses them.

It highlighted the differences between inbound and outbound handlers and the differences
in operating on bytes or messages of various types.

In the next chapter I�ll focus on the codec abstraction of Netty, which makes writing codecs
much easier than using raw ChannelHandler interfaces. Also, I�ll take a deeper look at how
you can easily test your ChannelHandler implementations.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

108

http://www.manning-sandbox.com/forum.jspa?forumID=857

7
Codec

This chapter covers

 Codec

 Decoder

 Encoder

In the last chapter, you learned about the various ways to hook into the processing chain and
how you can intercept operations or data. While ChannelHandler works to implement all
kinds of logic, there�s still room for improvement.

To fulfill this, Netty offers a so-called codec framework that makes writing custom codecs
for your protocol a piece of cake and allows for easy reuse and encapsulation.

This chapter discusses the different parts of the codec framework and how you can use it.

7.1 Codec
Whenever you write a network-based program, you�ll need to implement some kind of codec.
The codec defines how the raw bytes need to be parsed and converted to some kind of logic
unit that represents a custom message. The same is true for converting the message back to
raw bytes that can be transmitted back over the network.

Remember that everything is done by transferring bytes from one peer to another when
transferring data over the network. A codec is made up of two parts:

 Decoder

 Encoder

The decoder is responsible for decoding from bytes to the message or to another sequence of
bytes. The encoder does the reverse; it encodes from a message back to bytes or from bytes
to another sequence of bytes.

This should make it clear that the decoder is for inbound and the encoder is for outbound
data.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

109

http://www.manning-sandbox.com/forum.jspa?forumID=857

Message handling

As mention in Chapter 5 and Chapter 6 you need to take special care about message because
of reference counting which may be used. For Decoder and Encoder the contract is quite
simple. Once a message is decoded or decoded it is automatically released via
ReferenceCountUtil.release(message). If you want to explicit not release the message as you
may need to keep a reference for later usage etc you need to call
ReferenceCountUtil.retain(message). This will make sure the reference count is incremented
and so the message not released.

Most of the times you will not need this and is more for more advanced use cases.

Let�s look at the various abstract base classes in Netty that allow implementing the decoder
and encoder in an easy fashion.

7.2 Decoders
Netty provides a rich set of abstract base classes that help you easily write decoders. These are
divided into different types:

 Decoders that decode from bytes to message

 Decoders that decode from message to message

 Decoders that decode from message to bytes

This section will give you an overview about the different abstract base classes you can use to
implement your decoder and help you understand what a decoder is good for.

Before I dive into the actual abstract classes that Netty provides, let�s define what the
decoder�s responsibility is. A decoder is responsible for decoding inbound data from one format
to another one. Because a decoder handles inbound data, it�s an abstract implementation of
ChannelInboundHandler.

You may ask yourself when you�ll need a decoder in practice. It is quite simple; whenever
you need to transform inbound data for the next ChannelInboundHandler in the
ChannelPipeline.

It�s even more flexible than you may expect, as you can put as many decoders in the
ChannelPipeline as you need, thanks to the design of the ChannelPipeline, which
allows you to assemble your logic of reusable components.

7.2.1 ByteToMessageDecoder
Often you want to decode from bytes to messages or even from bytes to another sequence of
bytes. This is such a common task that Netty ship an abstract base class that you can use to do
this.

Exactly for this use case ByteToMessageDecoder is provided. It�s an abstract base class
that lets you write decoders that decode bytes into objects (POJOs) in an easy fashion.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

110

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 7.2 shows the most interesting methods of ByteToMessageDecoder and explains
how these are used.

Table 7.2 Methods of ByteToMessageDecoder

Method name Description

decode()

The decode() method is the only abstract method you need to
implement. It�s called with a ByteBuf that holds all the
received bytes and a List into which decoded messages should
be added. The decode() method is called as long as it
decodes something.

decodeLast()

Default implementation delegates to decode().

This method is called once, which is when the Channel goes
inactive. If you need special handling here you may override
decodeLast() to implement it.

Let�s imagine we have a stream of bytes written from a remote peer to us, and that it
contains simple integers. We want to handle each integer separately later in the
ChannelPipeline, so we want to read the integers from the inbound ByteBuf and pass
each integer separately to the next ChannelInboundHandler in the ChannelPipeline.

Figure 7.2 Logic of ToIntegerDecoder

You see in figure 7.2 that it will read bytes from the inbound ByteBuf of the
ToIntegerDecoder, decode them, and write the decoded messages (int this case Integer)
to the next ChannelInboundHandler in the ChannelPipeline. The figure also shows each
integer will take up four bytes in the ByteBuf.

The following listing shows how an implementation is done for this.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

111

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 7.3 ByteToMessageDecoder that decodes to Integer
public class ToIntegerDecoder extends ByteToMessageDecoder { #1

 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 if (in.readableBytes() >= 4) { #2
 out.add(in.readInt()); #3
 }
 }
}

#1 Implementation extends ByteToMessageDecode to decode bytes to messages
#2 Check if there are at least 4 bytes readable
#3 Read integer from inbound ByteBuf, add to the List of decodec messages

Using ByteToMessageDecoder makes writing decoders that decode from byte to message
easy as you saw in listing 7.2. But you may have noticed one little thing that is sometimes
annoying. You need to check if there are enough bytes ready to read on the input ByteBuf
before you do the actual read operation.

Wouldn�t it be preferable if this was unnecessary? Yes, it sometimes is and Netty addresses
this with some special decoders that allow for byte-to-message decoding. The next section will
cover it.

For a more complex example, please refer to the LineBasedFrameDecoder. This is part
of Netty itself and can be found in the io.netty.handler.codec package. In addition to
this, there are many other implementations included, as decoding from bytes to messages is
often useful.

7.2.2 ReplayingDecoder
ReplayingDecoder is a special abstract base class for byte-to-message decoding that would
be to hard to implement if you had to check if there�s enough data in the buffer all the time
before calling operations on it. It does this by wrapping the input ByteBuf with a special
implementation that checks if there�s enough data ready and, if not, throws a special Signal
that it handles internally to detect it. Once such a signal is thrown, the decode loop stops.

Because of this wrapping, ReplayingDecoder comes with some limitations:

 Not all operations on the ByteBuf are supported, and if you call an unsupported
operation, it will throw an UnreplayableOperationException.

 ByteBuf.readableBytes() won�t return what you expect most of the time.

If you can live with the listed limitations, you may prefer the ReplayingDecoder to the
ByteToMessageDecoder. The rule of thumb is, if you can use the ByteToMessageDecoder
without introducing too much complexity, do it. If this isn�t the case, use the
ReplayingDecoder.

Like I said before, ReplayingDecoder extends ByteToMessageDecoder, so the methods it
exposes are the same. Refer to table 7.2 to see them again.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

112

http://www.manning-sandbox.com/forum.jspa?forumID=857

Now let�s implement the ToIntegerDecoder with ReplayingDecoder in the following listing
to show how it can be simplified even further.

Listing 7.4 ReplayingDecoder decodes to integer
public class ToIntegerDecoder2 extends ReplayingDecoder<Void> { #1

 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 out.add(in.readInt()); #2

 }
}

#1 Implementation extends ReplayingDecoder to decode bytes to messages
#2 Read integer from inbound ByteBuf and add it to the List of decoded messages

When reading the integer from the inbound ByteBuf, if not enough bytes are readable, it will
throw a signal which will be cached so the decode(…) method will be called later, once more
data is ready. Otherwise, add it to the List.

Compare listing 7.3 with listing 7.2 should make it easy to spot that the implementation
even is even more straightforward.

Now imagine how to simplify the code if you need to implement something more complex.
Again, using ReplayingDecoder or ByteToMessageDecoder is often a matter of taste. The
important fact here is that Netty provides you with something you can easily use. Which one
you choose is up to you.

But what do you do if you want to decode from one message to another message (for
example, POJO to POJO)? This can be done using MessageToMessageDecoder, which is
explained in the next section.

For a more complex example, please refer to the WebSocket08FrameDecoder or any
other decoder in the io.netty.handler.codec.http.websocketx package.

7.2.3 MessageToMessageDecoder�Decode POJOs on the fly
If you want to decode a message to another type of message MessageToMessageDecoder is
the easiest way to go. The semantic is quite the same as for all the other decoders I explained
before.

Again I�ll have a look at the methods. Table 7.3 lists and explains them.

Table 7.3 Methods of MessageToMessageDecoder

Method name Description

decode()

The decode() method is the only abstract method you need to
implement. It�s called for each inbound message of the decoder
and lets you decode the message in an other message format .
The decoded messages are then passed t o the next
ChannelInboundHandler in the ChannelPipeline..

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

113

http://www.manning-sandbox.com/forum.jspa?forumID=857

decodeLast()

Default implementation delegates to decode().

decodeLast() is only called one time, which is when the
Channel goes inactive. If you need special handling here you
may override decodeLast() to implement it.

To illustrate some uses let me give you an example. Imagine you have integers and need to
convert them to a string. This should be done as part of the ChannelPipeline and
implemented as a separate decoder to make it as flexible and reusable as possible.

Figure 7.3 shows the actual logic of the class I want to implement.

Figure 7.3 Logic of IntegerToStringDecoder

As it operates on messages and not bytes (in fact, a message can also be of type bytes). The
inbound message is directly passed in the decode(�) method and decoded messages will be
added to the List of decoded messages.

So the decoder will �receive� inbound messages, decode them, and add them to the List of
decoded messages. Once done it will forward all decoded messages to the next
ChannelInboundHandler in the ChannelPipeline.

Let�s look at the concrete implementation of our needed logic in listing 7.5.

Listing 7.5 MessageToMessageDecoder decodes integer to string
public class IntegerToStringDecoder extends
 MessageToMessageDecoder<Integer> { #1

 @Override
 public void decode(ChannelHandlerContext ctx, Integer msg
 List<Object> out) throws Exception {
 out.add(String.valueOf(msg)); #2

 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

114

http://www.manning-sandbox.com/forum.jspa?forumID=857

}
#1 Implementation extends MessageToMessageDecoder
#2 Convert integer message string using String.valueOf()

In (#1), when the implementation extends the MessageToMessageDecoder to decode from one
message type to another, the Type parameter (generic) is used to specify the input parameter.
In our case, this is an integer type.

For a more complex example, please refer to the HttpObjectAggregator which can be
found in the io.netty.handler.codec.http package.

7.2.4 Decoders summary
You should now have a good knowledge what abstract base classes Netty supports to write
decoders and what decoders are good for. Decoders are only one piece of the picture. This is
because most of the time you also need a way to transform outbound data. This is the job of
an encoder, which is another part of the codec API.

The next sections will give you more insight into how you can write your own encoder.

7.3 Encoders
As a counterpart to the decoders Netty offers, base classes help you to write encoders in an
easy way. Again, these are divided into different types similar to what you saw in section 7.2:

 Encoders that encode from message to message

 Encoders that encode from message to bytes

You may have noticed that it misses one type compared with the types listed in the decoders
section. This is because it doesn�t make sense to encode from byte stream to messages
because if you write a ByteBuf to the Channel it will be a message of type ByteBuf and not
a stream of bytes.

Before going deeper, let�s define the responsibility of an encoder. An encoder is responsible
for encoding outbound data from one format to another. As an encoder handles outbound data,
it implements ChanneOutboundHandler.

With this in mind, it�s time to look at the provided abstract classes that help implement your
encoder.

7.3.1 MessageToByteEncoder
As you learned in section 7.2.2 you often want to convert from bytes to messages. You already
saw how to do this for inbound data via the ByteToMessageDecoder. But what do you do to
move back from message to bytes?

MessageToByteEncoder is provided to serve as an abstract base class for your encoder
implementations that need to transform messages back into bytes.

Table 7.5 shows the exact method you need to implement for your encoder, which is named
encode.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

115

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 7.5 Methods of MessageToByteEncoder

Method name Description

encode()

The encode() method is the only abstract method you need to
implement. It�s called with the outbound message, which was
received by this encoder and encodes it in a ByteBuf. The
ByteBuf is then forwarded to the next
ChannelOutboundHandler in the ChannelPipeline.

Let�s see it in action to better understand its usage. I�ve written single short values and want to
encode them into a ByteBuf to finally send them over the wire. IntegerToByteEncoder is
the implementation that�s used for this purpose.

Figure 7.5 shows the logic.

Figure 7.5 Logic of IntegerToByteEncoder

Figure 7.5 shows that it will �receive �short messages, encode, and write to a ByteBuf. This
ByteBuf is then forwarded to the next ChannelOutboundHandler in the
ChannelPipeline. As you can also see in figure 7.5, every short will take up 2 bytes in the
ByteBuf.

The following listing shows how an implementation is done for this.

Listing 7.8 IntegerToByteEncoder encodes shorts into a ByteBuf
public class IntegerToByteEncoder extends
 MessageToByteEncoder<Short> { #1

 @Override
 public void encode(ChannelHandlerContext ctx, Short msg, ByteBuf out)
 throws Exception {
 out.writeShort(msg); #2
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

116

http://www.manning-sandbox.com/forum.jspa?forumID=857

}
#1 Implementation extends MessageToByteEncoder
#2 Write short into ByteBuf

Netty comes with several MessageToByteEncoder implementations which can be serve as
examples to how to make use of the MessageToByteEncoder to create your own
implementation. Please have a look at the WebSocket08FrameEncoder for a more real-
world example. It can be found in the io.netty.handler.codec.http.websocketx
package.

7.3.2 MessageToMessageEncoder
You�ve seen several decoder and encoder types. But one is still missing to complete the mix.
Suppose you need a way to encode from one message to another, similar to what you did for
inbound data with MessageToMessageDecoder.

MessageToMessageEncoder fills this gap. Table 7.6 shows the method you need to
implement for your encoder, which is named encode.

Table 7.6 Methods of MessageToMessageEncoder

Name Description

encode()

The encode() method is the only abstract method you need to
implement. It�s called for each message written with write(�)
and encode the message to one or multiple new messages. The
encoded messages are then forwarded to the next
ChannelOutboundHandler in the ChannelPipeline.

Again let us look at some example. Imaging you need to encode Integer messages to String
messages you could do this easily with MessageToMessageEncoder.

Figure 7.6 shows the logic.

Figure 7.6 Logic of IntegerToStringEncoder

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

117

http://www.manning-sandbox.com/forum.jspa?forumID=857

The encoder encode Integer messages and forward them to the next
ChannelOutboundHandler in the ChannelPipeline.

The following listing 7.9 shows how an implementation for this is done.

Listing 7.9 IntegerToStringEncoder encodes integer to string
public class IntegerToStringEncoder extends
 MessageToMessageEncoder<Integer> { #1

 @Override
 public void encode(ChannelHandlerContext ctx, Integer msg
 List<Object> out) throws Exception {
 out.add(String.valueOf(msg)); #2
 }
}

#1 Implementation extends MessageToMessageEncoder
#2 Convert integer to string and add to MessageBuf

Again there are more complex examples which use the MessageToMessageEncoder. One of
those is the ProtobufEncoderm which can be found in the
io.netty.handler.codec.protobuf package.

7.4 Codec
Often you want to write an implementation, which handles decoding and encoding and is
encapsulated in one class. Remember, decoding is for inbound data and encoding for outbound
data.

Knowing what type of encoders and decoders are provided, you won�t be surprised to learn
that the codecs available handle the following scenarios:

 byte-to-message decoding and encoding

 message-to-message decoding and encoding

If you�re sure you�ll need to have the encoder and decoder in the ChannelPipeline all the
time and it won�t work to only have one of the two, you may be better off using one of the
abstract codecs.

Also, when using a codec, it�s not possible to remove only the decoder or the encoder and
so may leave the ChannelPipeline in some kind of inconsistent state. Using a codec will
force you to have both the decoder and encoder in the ChannelPipeline or none of these.

With this in mind, let�s spend the next few sections taking a deeper look at the provided
abstract codec classes that make writing a codec easy.

7.4.1 ByteToByteCodec�Decoding and Encoding of bytes
If you need to decode and encode bytes to build up your codec, ByteToByteCodec is the
right fit for you.

This is more or less a combination of ByteToByteDecoder and ByteToByteEncoder, at
least in terms of functionality, as it doesn�t extend both. This is because extending multiple
abstract classes isn�t supported in Java, at least not at the time of writing.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

118

http://www.manning-sandbox.com/forum.jspa?forumID=857

Because it acts like a combination of ByteToByteDecoder and ByteToByteEncoder, it
also exposes the same abstract methods you need to implement. Table 7.7 lists these
methods.

Table 7.7 Methods of ByteToByteCodec

Method name Description

decode()

The decode() method is called with the inbound ByteBuf of
the decoder and the inbound ByteBuf of the next
ChannelInboundByteHandler in the
ChannelPipeline. The decode() method will be called as
long as bytes are consumed.

decodeLast()

Default implementation delegates to decode().

decodeLast() will only be called one time, which is when the
Channel goes inactive. If you need special handling here you
may override decodeLast() to implement it.

encode()

The encode() method is called with the outbound ByteBuf
of the encoder and the outbound ByteBuf of the next
ChannelOutboundByteHandler in the
ChannelPipeline. The encode() method will be called as
long as bytes are consumed.

All of this should be familiar at this point if you read the previous sections; if not, you may
want to take the time to do so to get a better understanding about the responsibilities of a
decoder and encoder.

So what would be a good fit for a ByteToByteCodec?
One is handling of compression. The decode method uncompresses and the encode method

compresses. Also, it makes sense to write it in a codec, as the compressing and uncompressing
are quite tight to each otherbecause the same algorithm needs to be used.

7.4.2 ByteToMessageCodec�Decoding and encoding messages and bytes
Imagine you want to have a codec that decodes bytes to some kind of message (a POJO) and
encodes the message back to bytes. For this case, a ByteToMessageCodec is a good choice.

Again, the codec is kind of a combination. So it�s like having a ByteToMessageDecoder
and the corresponding MessageToByteDecoder in the ChannelPipeline.

Let�s look at the important methods in table 7.8.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

119

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 7.8 Methods of ByteToByteCodec

Method name Description

decode()

The decode() method is called with the inbound ByteBuf of
the codec and decode them to messages. Those messages are
forwarded to the next ChannelInboundHandler in the
ChannelPipeline. The decode() method will be called as
long as bytes are consumed .

decodeLast()

Default implementation delegates to decode().

decodeLast() will only be called one time, which is when the
Channel goes inactive. If you need special handling here you
may override decodeLast() to implement it.

encode()

The encode() method is called for each message written
through the ChannelPipeline. The encoded messages are
written in a ByteBuf and the ByteBuf is forwarded to the
next ChannelOutboundHandler in the
ChannelPipeline.

Let�s think about a good fit for such a ByteToMessageCodec.
Every codec that needs to decode from bytes to some custom message and back is a good

fit. For example, I�ve used it in the past to build a SMTP codec which reads bytes and decodes
them to a custom message type called SmtpRequest. The encode method then took
SmtpResponse messages and encoded them to bytes.

You see it�s especially useful for requests/responses such as codecs.

7.4.3 MessageToMessageCodec�Decoding and encoding messages
Sometimes you need to write a codec that�s used to convert from one message to another
message type and vice versa. MessageToMessageCodec makes this a piece of cake.

Before going into the details, let�s look at the important methods in table 7.9.

Table 7.9 Methods of MessageToMessageCodec

Method name Description

decode()

The decode() method is called with the inbound message of
the codec and decode them to messages. Those messages are
forwarded to the next ChannelInboundHandler in the
ChannelPipeline

decodeLast() Default implementation delegates to decode().

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

120

http://www.manning-sandbox.com/forum.jspa?forumID=857

decodeLast() will only be called one time, which is when the
Channel goes inactive. If you need special handling here you
may override decodeLast() to implement it.

encode()

The encode() method is called for each message written
through the ChannelPipeline. The encoded messages are
forwarded to the next ChannelOutboundHandler in the
ChannelPipeline.

.

But where can such a codec be useful?
There are many use cases, but one of the most common is when you need to convert a

message from one API to another API on the fly. This is necessary for situations in which you
need to talk with a custom or old API that uses another message type.

The following listing shows this in action when converting between WebSocket frame APIs.

Listing 7.10 WebSocketConvertHandler converts from one API to another
@ChannelHandler.Sharable
public class WebSocketConvertHandler extends MessageToMessageCodec<
WebSocketFrame, WebSocketConvertHandler.WebSocketFrame> {

 public static final WebSocketConvertHandler INSTANCE = new
WebSocketConvertHandler();

 @Override
 protected void encode(ChannelHandlerContext ctx, WebSocketFrame msg
 List<Object> out) throws Exception {
 switch (msg.getType()) {
 case BINARY:
 out.add(new BinaryWebSocketFrame(msg.getData()));
 return;
 case TEXT:
 out.add(new TextWebSocketFrame(msg.getData()));
 return;
 case CLOSE:
 out.add(new CloseWebSocketFrame(true, 0, msg.getData()));
 return;
 case CONTINUATION:
 out.add(new ContinuationWebSocketFrame(msg.getData()));
 return;
 case PONG:
 out.add(new PongWebSocketFrame(msg.getData()));
 return;
 case PING:
 out.add(new PingWebSocketFrame(msg.getData()));
 return;
 default:
 throw new IllegalStateException(
 "Unsupported websocket msg " + msg);
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

121

mailto:@ChannelHandler.Sharable
http://www.manning-sandbox.com/forum.jspa?forumID=857

 }

 @Override
 protected void decode(ChannelHandlerContext ctx,
 io.netty.handler.codec.http.websocketx.WebSocketFrame msg,
 List<Object> out) throws Exception {
 if (msg instanceof BinaryWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.BINARY, msg.data().copy()));
 return;
 }
 if (msg instanceof CloseWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.CLOSE, msg.data().copy()));
 return;
 }
 if (msg instanceof PingWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.PING, msg.data().copy()));
 return;
 }
 if (msg instanceof PongWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.PONG, msg.data().copy()));
 return;
 }
 if (msg instanceof TextWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.TEXT, msg.data().copy()));
 return;
 }
 if (msg instanceof ContinuationWebSocketFrame) {
 out.add(new WebSocketFrame(
 WebSocketFrame.FrameType.CONTINUATION,
 msg.data().copy()));
 return;
 }
 throw new IllegalStateException("Unsupported websocket msg " + msg);
 }

 public static final class WebSocketFrame {
 public enum FrameType {
 BINARY,
 CLOSE,
 PING,
 PONG,
 TEXT,
 CONTINUATION
 }

 private final FrameType type;
 private final ByteBuf data;
 public WebSocketFrame(FrameType type, ByteBuf data) {
 this.type = type;
 this.data = data;
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

122

http://www.manning-sandbox.com/forum.jspa?forumID=857

 public FrameType getType() {
 return type;
 }

 public ByteBuf getData() {
 return data;
 }
 }}

7.5 Other ways to compose
When you use codecs that act as a combination of a decoder and encoder, you lose the
flexibility to use the decoder or encoder individually. You�re forced to either have both or
neither.

You may wonder if there�s a way around this inflexibility problem that still allows you to
have the decoder and encoder as a logic unit in the ChannelPipeline.

Fortunately, there is a solution for this called CombinedChannelDuplexHandler.
Although this handler isn�t part of the codec API itself, it�s often used to build up a codec. .

7.5.1 CombinedChannelDuplexHandler�Combine your handlers
To show how you can use CombinedChannelDuplexHandler to combine a decoder and
encoder, let�s create those first. I�ll use two simple examples to illustrate the use case.

The following listing shows a decoder, which decodes bytes to chars.

Listing 7.11 ByteToCharDecoder decodes bytes into chars
public class ByteToCharDecoder extends
 ByteToMessageDecoder { #A

 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 while (in.readableBytes() >= 2) { #B
 out.add(Character.valueOf(in.readChar()));
 }
 }
}

#A Extends ByteToMessageDecoder
#B Writes char into MessageBuf

Notice that the implementation extends ByteToMessageDecoder because it reads chars
from a ByteBuf and adds it to the next MessageBuf.

Now have a look at the following listing, which represents the encoder that encodes chars
back into bytes.

Listing 7.12 CharToByteEncoder encodes chars into bytes
public class CharToByteEncoder extends
 MessageToByteEncoder<Character> { #A

 @Override
 public void encode(ChannelHandlerContext ctx, Character msg,ByteBuf out)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

123

http://www.manning-sandbox.com/forum.jspa?forumID=857

 throws Exception {
 out.writeChar(msg); #B
 }
}

#A Extends MessageToByteEncoder
#B Writes char into ByteBuf

The implementation extends MessageToByteEncoder because it needs to encode char
messages into a ByteBuf.

Now that they are both present, it�s time to combine them to build up a codec, as shown in
the following listing.

Listing 7.13 CharToByteEncoder encodes chars into bytes
public class CharCodec extends
 CombinedChannelDuplexHandler<ByteToCharDecoder, CharToByteEncoder> { #1

 public CharCodec() {
 super(new ByteToCharDecoder(), new CharToByteEncoder()); #2
 }
}

#1 Handles inbound bytes and outbound messages
#2 Pass an instance of ByteToCharDecoder and CharToByteEncoder to the super constructor as it will
delegate calls to them to combine them

This implementation can now be used to bundle the decoder and encoder. As you see, it�s quite
easy and often more flexible than using one of the *Codec classes.

What you choose to use is a matter of taste and style.

7.6 Summary
In this chapter, you learned how to use the provided codec API to write your own decoders and
encoders. You also learned why using the codec API is the preferred way to write your
decoders and encoders over using the plain ChannelHandler API.

In addition, you learned about the different abstract codec classes, which let you write a
codec and let you handle decoding and encoding in one implementation.

If this isn�t flexible enough, you also know how to combine a decoder and encoder to
transform them to a logical unit without the need to extend any of the abstract codec classes.

In the next chapter, you�ll get a brief overview about the provided ChannelHandler
implementations and codecs that you can use out of the box to handle specific protocols and
tasks.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

124

http://www.manning-sandbox.com/forum.jspa?forumID=857

8
Provided ChannelHandlers and

codecs

This chapter covers

 Securing Netty applications with SSL/TLS

 Building Netty HTTP/HTTPS applications

 Handling idle connections and timeouts

 Decoding delimiter- and length-based protocols

 Writing big data

 Serializing data

The previous chapter showed you how to create your own codec. With this new knowledge you
can now write your own codec for your application. Nevertheless, wouldn't it be nice if Netty
offered some standard ChannelHandlers and codecs?

Netty bundles many common protocol implementations (such as HTTP) so you don�t have to
reinvent the wheel. Those implementations can be reused out of the box, freeing you up to
focus on more specific problems. This chapter will show you how to secure your Netty
applications with SSL/TLS, how to write scalable HTTP servers, and how to use associated
protocols such as WebSockets or Google's SPDY to get the best performance out of HTTP. All of
these are common, and sometimes necessary, applications. This chapter will also introduce you
to compression, for use when size really does matter.

8.1 Securing Netty applications with SSL/TLS
Communication of data over a network is insecure by default, as all the transmitted data may
be sent in plain text or binary protocols that are easy to decode. This becomes a problem once
you want to transmit data that must be private.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

125

http://www.manning-sandbox.com/forum.jspa?forumID=857

Encryption comes into play in this situation. TLS and SSL are well-known standards and
layered on top of many protocols to make sure data remains private. For example, if you use
HTTPS or SMTPS, you're using encryption. Even if you're not aware of it, you've most likely
already touched base with encryption at some point.

For SSL/TLS, Java ships an abstraction called SslContext and SslEngine. In fact, the
SslContext can be used to obtain a new SslEngine, which can be used for decryption and
encryption. It�s highly configurable to support only specific ciphers and more, but this is out of
the scope of this section.

Netty extends Java's SSL engine to add functionality that makes it more suitable for Netty-
based applications. It ships a ChannelHandler called SslHandler that wraps an
SslEngine for decryption and encryption of its network traffic.

Figure 8.1 shows the data flow for the SslHandler implementation.

Figure 8.1 SslHandler

#1 Encrypted inbound data is intercepted by the SslHandler and gets decrypted
#2 The previous encrypted data was decrypted by the SslHandler
#3 Plain data is passed through the SslHandler
#4 The SslHandler encrypted the data and passed it outbound

Listing 8.1 shows how you can use the SslHandler by adding it to the ChannelPipeline
using a ChannelInitializer that you typically use to set up the ChannelPipeline once a
Channel is registered.

Listing 8.1 Add SSL/TLS support
public class SslChannelInitializer extends ChannelInitializer<Channel>{

 private final SSLContext context;
 private final boolean client;
 private final boolean startTls;

 public SslChannelInitializer(SSLContext context, boolean client,
 boolean startTls) { #1
 this.context = context;
 this.client = client;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

126

http://www.manning-sandbox.com/forum.jspa?forumID=857

 this.startTls = startTls;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 SSLEngine engine = context.createSSLEngine(); #2
 engine.setUseClientMode(client); #3

 ch.pipeline().addFirst("ssl",
 new SslHandler(engine, startTls)); #4
 }
}

#1 Use the constructor to pass the SSLContext to use and if it�s a client and startTls should be used
#2 Obtain a new SslEngine from the SslContext. Use a new SslEngine for each SslHandler instance
#3 Set if the SslEngine is used in client or server mode
#4 Add the SslHandler in the pipeline as first handler

One important thing to note is that in almost all cases the SslHandler must be the first
ChannelHandler in the ChannelPipeline. There may be some exceptions, but take this as
rule of thumb. Recall in the chapter that covers ChannelHandlers that we said the channel
pipeline is like a LIFO queue for inbound messages and a FIFO (first-in-first-out) queue for
outbound messages. Adding the SSL handler first ensures that all other handlers have applied
their transformations/logic to the data before it�s encrypted, thus ensuring that changes from
all handlers are secured on a Netty server.

The SslHandler also has some useful methods, as shown in table 8.1, you can use to
modify its behavior or get notified once the SSL/TLS handshake is complete (during the
handshake the two peers validate each other and choose an encryption cipher that both
support). The SSL/TLS handshake will be executed automatically for you.

Table 8.1 Methods to modify a ChannelPipeline

Name Description
setHandshakeTimeout(...)
setHandshakeTimeoutMillis(...

)
getHandshakeTimeoutMillis()

Set and get the timeout after which the handshake will
fail and the handshake ChannelFuture is notified.

setCloseNotifyTimeout(...)
setCloseNotifyTimeoutMillis(.

..)
getCloseNotifyTimeoutMillis()

Set and get the timeout after which the close notify will
time out and the connection will close. This also results in
having the close notify ChannelFuture fail.

handshakeFuture(...)
Returns a ChannelFuture that will get notified once
the handshake is complete. If the handshake was done
before it will return a ChannelFuture that contains the
result of the previous handshake.

close(...) Send the close_notify to request close and destroy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

127

http://www.manning-sandbox.com/forum.jspa?forumID=857

the underlying SslEngine.

8.2 Building Netty HTTP/HTTPS applications
HTTP/HTTPS is one of the most used protocols these days, and with the success of
smartphones it gets more attention with each passing day. Almost every company has a
homepage these days that you can access via HTTP or HTTPS, but this isn�t the only use for it.
Many services expose an API via HTTP/HTTPS for easy use in a platform-independent manner.

Fortunately, Netty comes with handlers that allow you to use HTTP without requiring you to
write your own codecs and so on.

8.2.1 Netty's HTTP decoder, encoder, and codec
HTTP uses a Request�Response pattern, which means the client sends an HTTP request to

the server and the server sends an HTTP response back. Netty makes it easy to work with
HTTP by providing various encoders and decoders for handling HTTP protocols. Figures 8.2 and
8.3 shows the commands that reproduce and handle the HTTP-specific messages for requests
and responses, respectively.

Figure 8.2 HTTP request parts

#1 First part of the HTTP-Request that contains headers and so on
#2 One more HttpContent part that contains chunks of data
#3 Special HttpContent subtype that marks the end of the HTTP request and may also contain trailing
headers
#4 A full HTTP request with everything included

Figure 8.3 HTTP response parts

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

128

http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 First part of the HTTP response that contains headers and so on
#2 One more HttpContent part that contains chunks of data
#3 Special HttpContent subtype that marks the end of the HTTP response and may also contain trailing
headers
#4 A full HTTP response with everything included

As shown in figures 8.2 and 8.3, respectively, an HTTP request/response may consist of more
than one message. Its end is always marked with the LastHttpContent message. The
FullHttpRequest and FullHttpResponse commands are a special subtype that represent
a complete request and response. All types of HTTP messages (FullHttpRequest,
LastHttpContent, and those shown in listing 8.2) implement the HttpObject interface as
their parent.

Table 8.2 gives an overview of the HTTP decoders and encoders that handle and produce
the messages.

Table 8.2 HTTP decoder and encoder

Name Description

HttpRequestEncoder Encodes HttpRequest and HttpContent messages
to bytes.

HttpResponseEncoder Encodes HttpResponse and HttpContent messages
to bytes.

HttpRequestDecoder Decodes bytes into HttpRequest and HttpContent
messages.

HttpResponseDecoder Decodes bytes into HttpResponse and HttpContent
messages.

Listing 8.2 Add support for HTTP
public class HttpDecoderEncoderInitializer
 extends ChannelInitializer<Channel> {

 private final boolean client;

 public HttpDecoderEncoderInitializer(boolean client) {
 this.client = client;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 if (client) {
 pipeline.addLast("decoder", new HttpResponseDecoder()); #1
 pipeline.addLast("encoder", new HttpRequestEncoder()); #2
 } else {
 pipeline.addLast("decoder", new HttpRequestDecoder()); #3
 pipeline.addLast("encoder", new HttpResponseEncoder()); #4

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

129

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }
 }
}

#1 Add HttpResponseDecoder as decoder as a client will receive responses from the server
#2 Add HttpRequestEncoder as encoder as the client will send requests to the server
#3 Add HttpRequestDecoder as decoder as the server will receive request from the client
#4 Add HttpResponseEncoder as encoder as the server will send responses to the client

If you need to have a decoder and encoder in the ChannelPipeline, there�s also a codec to
simplify things for the client and server. So instead of adding the decoder and encoder, use
HttpClientCodec or HttpServerCodec.

After you have the decoder, encoder, or codec in the ChannelPipeline, you�ll be able to
operate on the different HttpObject messages. But as an HTTP request and HTTP response
can be made out of many �messages,� you�ll need to handle the different parts and may have
to aggregate them. This can be cumbersome. To solve this problem, Netty provides an
aggregator, which will merge message parts into FullHttpRequest and
FullHttpResponse messages, so you don�t need to worry about receiving only �fragments.�
The next section will explain message aggregation in more detail.

8.2.2 HTTP message aggregation
As explained in the previous section, when dealing with HTTP you may receive HTTP messages
in fragments, because otherwise Netty would need to buffer the whole message until it�s
received.

Situations exist where you want to handle only �full� HTTP messages and be okay with
some memory overhead. For this purpose Netty bundles the HttpObjectAggregator.

With the HttpObjectAggregator Netty will aggregate HTTP message parts for you and
only forward FullHttpResponse and FullHttpRequest to the next inbound
ChannelHandler in the ChannelPipeline. This eliminates the worry about fragmentation
and ensures you act only on �complete� messages.

Automatic aggregation is as easy as adding another ChannelHandler in the
ChannelPipeline. Listing 8.3 shows how to enable the aggregation.

Listing 8.3 Automatically aggregate HTTP message fragments
public class HttpAggregatorInitializer extends ChannelInitializer<Channel> {

 private final boolean client;

 public HttpAggregatorInitializer(boolean client) {
 this.client = client;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 if (client) {
 pipeline.addLast("codec", new HttpClientCodec()); #1
 } else {
 pipeline.addLast("codec", new HttpServerCodec()); #2

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

130

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }
 pipeline.addLast("aggegator",
 new HttpObjectAggregator(512 * 1024)); #3
 }
}

#1 Add HttpClientCodec as we are in client mode
#2 Add HttpServerCodec as we are in server mode
#3 Add HttpObjectAggregator to the ChannelPipeline, using a max message size of 512kb. After the
message is getting bigger a TooLongFrameException is thrown.

As you can see, it�s easy to let Netty automatically aggregate the message parts for you. Be
aware that to guard your server against DoS attacks you need to choose a sane limit for the
maximum message size. How big the maximum message size should be depends on your use
case, concurrent requests/responses, and, of course, the amount of usable memory available.

8.2.3 HTTP compression
When using HTTP it�s often advisable to use compression to minimize the data you need to
transfer over the wire. The performance gain from this isn�t free, however, as compression puts
more load on the CPU. Although today�s increased computing capabilities mean that this isn�t
as much of an issue as a few years ago, using compression is a good idea most of the time.

Netty comes out of the box with �gzip� and �deflate� support provided by two
ChannelHandler implementations: one for compression and one for decompression.
Compression and decompression are shown in listing 8.4.

Listing 8.4 Automatically compress HTTP messages
public class HttpAggregatorInitializer extends ChannelInitializer<Channel> {

 private final boolean client;

 public HttpAggregatorInitializer(boolean client) {
 this.client = client;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 if (client) {
 pipeline.addLast("codec", new HttpClientCodec()); #1
 pipeline.addLast("decompressor",
 new HttpContentDecompressor());
#2
 } else {
 pipeline.addLast("codec", new HttpServerCodec()); #3
 pipeline.addLast("decompressor",
 new HttpContentDecompressor());
#4
 }
}
}

#1 Add HttpClientCodec as we are in client mode
#2 Add HttpContentDecompressor as the server may send us compressed content

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

131

http://www.manning-sandbox.com/forum.jspa?forumID=857

#3 Add HttpServerCodec as we are in server mode
#4 Add HttpContentCompressor as the client may support compression and if so we want to compress
it

8.2.4 Using HTTPS
As mentioned before in this chapter, you may want to protect your network traffic using
encryption. You can do this via HTTPS, which is a piece of cake thanks to the �stackable�
ChannelHandlers that come with Netty.

All you need to do is to add the SslHandler to the mix, as shown in listing 8.5.

Listing 8.5 Using HTTPS
public class HttpsCodecInitializer extends ChannelInitializer<Channel> {

 private final SSLContext context;
 private final boolean client;

 public HttpsCodecInitializer(SSLContext context, boolean client) {
 this.context = context;
 this.client = client;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 SSLEngine engine = context.createSSLEngine();
 engine.setUseClientMode(client);
 pipeline.addFirst("ssl", new SslHandler(engine)); #1

 if (client) {
 pipeline.addLast("codec", new HttpClientCodec()); #2
 } else {
 pipeline.addLast("codec", new HttpServerCodec()); #3
 }
 }
}

#1 Add SslHandler to use HTTPS
#2 Add HttpClientCodec as we are in client mode
#3 Add HttpServerCodec as we are in server mode

Listing 8.5 demonstrates how Netty's pipeline enables flexible applications. This section is a
good example of how handlers enable a powerful approach to network programming. HTTP is
one of the most widely used protocols on the World Wide Web and Netty comes equipped with
all of the necessary tools to help you develop HTTP-based applications quickly and easily. In
the next section we'll look at one of the newest extensions to the HTTP protocol: WebSockets.

8.2.5 Using WebSockets
HTTP is nice, but what do you do if you need to publish information in real time? Previously,
you might have used a workaround such as long-polling, but that kind of solution isn�t optimal
and can be kind of slow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

132

http://www.manning-sandbox.com/forum.jspa?forumID=857

These reasons are exactly why the WebSockets specification and implementations were
created. WebSockets allow exchanging data in both directions (from client to server and from
server to client) without the need of a request-response pattern. While in the early days of
WebSockets it was only possible to send text data via WebSockets, this is no longer true. Now
you can also send binary data, which makes it possible to build everything you want on top of
WebSockets.

We won�t go into too much detail about how WebSockets works as it�s out of scope for this
book, but the general idea of what happens in a WebSocket communication is shown in figure
8.4.

Figure 8.4 WebSocket

#1 Client that communicates with server
#2 Server that communicates with client
#3 Client issues WebSocket handshake via HTTP(s) and waits for completion
#4 Connection upgraded to WebSockets

As you saw in figure 8.4 the connection starts as HTTP and then �upgrades� to WebSockets.
Adding support for WebSockets in your application is easy because Netty supports it via its
ChannelHandler implementations.

When using WebSockets there will be different message types you need to handle. Table
8.3 shows them.

Table 8.3 WebSocketFrame types

Name Description

BinaryWebSocketFrame WebSocketFrame that contains binary data.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

133

http://www.manning-sandbox.com/forum.jspa?forumID=857

TextWebSocketFrame WebSocketFrame that contains text data.

ContinuationWebSocketFrame
WebSocketFrame that contains text or binary data that
belongs to a previous BinaryWebSocketFrame or
TextWebSocketFrame.

CloseWebSocketFrame WebSocketFrame that represents a CLOSE request and
contains close status code and a phrase.

PingWebSocketFrame WebSocketFrame which request the send of a
PongWebSocketFrame.

PongWebSocketFrame WebSocketFrame which is sent as response to a
PingWebSocketFrame.

To keep it short we�ll only have a look at what to use for a WebSocket server. More information
for a client can be found in the examples that ship with Netty source code.

Netty offers many ways to use WebSockets, but the easiest one, which works for most
users, is using the WebSocketServerProtocolHandler when writing a WebSockets server,
as shown in listing 8.6. This handles the handshake and also the CloseWebSocketFrame,
PingWebSocketFrame, and PongWebSocketFrame for you.

Listing 8.6 Support WebSocket on the server
public class WebSocketServerInitializer extends ChannelInitializer<Channel>{
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ch.pipeline().addLast(
 new HttpServerCodec(),
 new HttpObjectAggregator(65536), #1
 new WebSocketServerProtocolHandler("/websocket"), #2
 new TextFrameHandler(), #3
 new BinaryFrameHandler(), #4
 new ContinuationFrameHandler()); #5
 }

 public static final class TextFrameHandler extends
 SimpleChannelInboundHandler<TextWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 TextWebSocketFrame msg) throws Exception {
 // Handle text frame
 }
 }

 public static final class BinaryFrameHandler extends
 SimpleChannelInboundHandler<BinaryWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 BinaryWebSocketFrame msg) throws Exception {
 // Handle binary frame
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

134

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }

 public static final class ContinuationFrameHandler extends
 SimpleChannelInboundHandler<ContinuationWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ContinuationWebSocketFrame msg) throws Exception {
 // Handle continuation frame
 }
 }
}

#1 Add HttpObjectAggregator as we need aggregated HttpRequests for the handshake
#2 Add WebSocketServerProtocolHandler will handle the upgrade if a request is send to /websocket
and also handle the Ping, Pong and Close frames after the upgrade
#3 TextFrameHandler will handle TextWebSocketFrames
#4 BinaryFrameHandler will handle BinaryWebSocketFrames
#5 ContinuationFrameHandler will handle ContinuationWebSocketFrames

If you want to support Secure-WebSocket, it�s as easy as adding the SslHandler as the first
ChannelHandler in the ChannelPipeline.

8.2.6 SPDY
SPDY (SPeeDY) is one of the new movements when it comes to HTTP. Google invented SPDY,
but you can find some of its �ideas� in the upcoming HTTP 2.0.

The idea of SPDY is to make transfer of content much faster. This is done by:

 GZIPing everything

 Encrypting everything

 Allowing multiple transfers per connection

 Providing support for different transfer priorities

At the time of writing there are three versions of SPDY in the wild. Those versions are based
on:

 Draft 1 � Initial version

 Draft 2 � Contains fixed and new features such as server-push

 Draft 3 � Contains fixes and features such as flow control

Many web browsers support SPDY at the time of writing, including Google Chrome, Firefox, and
Opera.

Netty comes with support for Draft 2 and Draft 3, which are the most used at the moment
and should allow you to support most of your users.

We won�t cover SPDY�s use in detail here as there�s a full chapter on it later in this book.

8.3 Handling idle connections and timeouts
You may find times when you want to handle idle connections and timeouts. Typically you�d
send a message, also called a "heartbeat," to the remote peer if it idles too long in order to
detect if it�s still alive. Another approach is to disconnect the remote peer if it idles too long.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

135

http://www.manning-sandbox.com/forum.jspa?forumID=857

Dealing with idle connections is such a core part of many applications that Netty ships a
solution for it. Three different ChannelHandlers handle idle and timeout, as shown in table
8.4.

Table 8.4 ChannelHandlers for handling idle and timeouts

Name Description

IdleStateHandler
IdleStateHandler fires an IdleStateEvent if the
connection idles too long. You can then act on the
IdleStateEvent.

ReadTimeoutHandler
ReadTimeoutHandler throws a
ReadTimeoutException and closes the Channel
when there is no inbound data received for the timeout.

WriteTimeoutHandler
WriteTimeoutHandler throws a
WriteTimeoutException and closes the Channel
when there is no inbound data received for the timeout.

The most used in practice is the IdleStateHandler, so let�s focus on it next.
Listing 8.9 shows how you can use the IdleStateHandler to get notified if you haven�t

received or sent data for 60 seconds. If this is the case, a heartbeat will be written to the
remote peer, and if this fails the connection is closed.

Listing 8.9 Send heartbeats on idle
public class IdleStateHandlerInitializer extends ChannelInitializer<Channel>
{

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(
 new IdleStateHandler(0, 0, 60, TimeUnit.SECONDS)); #1
 pipeline.addLast(new HeartbeatHandler());
 }

 public static final class HeartbeatHandler extends
ChannelStateHandlerAdapter {
 private static final ByteBuf HEARTBEAT_SEQUENCE =
 Unpooled.unreleasableBuffer(Unpooled.copiedBuffer(
 "HEARTBEAT", CharsetUtil.ISO_8859_1)); #2

 @Override
 public void userEventTriggered(ChannelHandlerContext ctx,
 Object evt) throws Exception {
 if (evt instanceof IdleStateEvent) {
 ctx.writeAndFlush(HEARTBEAT_SEQUENCE.duplicate())
 .addListener(
 ChannelFutureListener.CLOSE_ON_FAILURE); #3

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

136

http://www.manning-sandbox.com/forum.jspa?forumID=857

 } else {
 super.userEventTriggered(ctx, evt); #4
 }
 }
 }
}

#1 Add IdleStateHandler which will fire an IdleStateEvent if the connection has not received or send
data for 60 seconds
#2 The heartbeat to send to the remote peer
#3 Send the heartbeat and close the connection if the send operation fails
#4 Not of type IdleStateEvent pass it to the next handler in the ChannelPipeline

8.4 Decoding delimiter- and length-based protocols
As you work with Netty, you�ll come across delimiter-based and length-based protocols that
need to be decoded. This section explains the implementations that come with Netty for the
purpose of decoding these protocols.

8.4.1 Delimiter-based protocols
Often you need to handle delimiter-based protocols or build on top of them. Some examples of
delimiter-based protocols are SMTP, POP3, IMAP, and Telnet, to name a few. For those, Netty
ships with special handlers that make it easy to extract frames delimited by some sequence.

Table 8.5 ChannelHandler for handling idle and timeouts

Name Description

DelimiterBasedFameDecoder Decoder that extracts frames for a given delimiter.

LineBasedFrameDecoder Decoder that extracts frames for \r \n delimiter. This is
faster than DelimiterBasedFrameDecoder.

So how does it work? Let�s have a look at figure 8.5, which shows how frames are handled
when delimited by a "\r\n� sequence.

Figure 8.5 Delimiter terminated frame handling

#1 Stream of bytes
#2 First frame which was extracted out of the stream
#3 Second frame which was extracted out of the stream

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

137

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 8.10 shows how you can use the LineBasedFrameDecoder to extract the �\r\n�
delimited frames.

 Listing 8.10 Handling \r\n delimited frames
public class LineBasedHandlerInitializer extends ChannelInitializer<Channel>
{

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new LineBasedFrameDecoder(65 * 1024)); #1
 pipeline.addLast(new FrameHandler()); #2
 }

 public static final class FrameHandler
 extends SimpleChannelInboundHandler<ByteBuf> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ByteBuf msg) throws Exception { #3
 // Do something with the frame
 }
 }
}

#1 Add LineBasedFrameDecoder which will extract the frames and forward to the next handler in the
pipeline
#2 Add FrameHandler that will receive the frames
#3 Do something with the frame

If your frames are delimited by something other than line breaks, you can use the
DelimiterBasedFrameDecoder in a similar fashion. You only need to pass the delimiter to
the constructor.

Those decoders are also useful if you want to implement your own delimiter-based protocol.
Imagine you have a protocol that handles only commands. Those commands are formed out of
a name and arguments. The name and the arguments are separated by a whitespace.

Writing a decoder for this is a piece of cake if you extend the LineBasedFrameDecoder.
Listing 8.11 shows how to do it.

Listing 8.11 Decoder for the command and the handler
public class CmdHandlerInitializer extends ChannelInitializer<Channel> {

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new CmdDecoder(65 * 1024)); #1
 pipeline.addLast(new CmdHandler()); #2
 }

 public static final class Cmd { #3
 private final ByteBuf name;
 private final ByteBuf args;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

138

http://www.manning-sandbox.com/forum.jspa?forumID=857

 public Cmd(ByteBuf name, ByteBuf args) {
 this.name = name;
 this.args = args;
 }

 public ByteBuf name() {
 return name;
 }

 public ByteBuf args() {
 return args;
 }
 }

 public static final class CmdDecoder extends LineBasedFrameDecoder {
 public CmdDecoder(int maxLength) {
 super(maxLength);
 }

 @Override
 protected Object decode(ChannelHandlerContext ctx, ByteBuf buffer)
 throws Exception {
 ByteBuf frame = (ByteBuf) super.decode(ctx, buffer); #4
 if (frame == null) {
 return null; #5
 }
 int index = frame.indexOf(frame.readerIndex(),
 frame.writerIndex(), (byte) ' '); #6
 return new Cmd(frame.slice(frame.readerIndex(), index),
 frame.slice(index +1, frame.writerIndex())); #7
 }
 }

 public static final class CmdHandler
 extends SimpleChannelInboundHandler<Cmd> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx, Cmd msg)
 throws Exception {
 // Do something with the command #8
 }
 }
}

#1 Add the CmdDecoder that will extract the command and forward to the next handler in the pipeline
#2 Add CmdHandler that will receive the commands
#3 The Pojo that represents the commands
#4 Extract the ByteBuf frame which was delimited by the \r\n
#5 There was no full frame ready so just return null
#6 Fix the first whitespace as it�s the separator of the name and arguments
#7 Construct the command by passing in the name and the arguments using the index
#8 Handle the command

8.4.2 Length-based protocols
Often you find length-based protocols out in the wild. For this case, Netty ships with two
different decoders that will help you extract frames, as shown in table 8.6.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

139

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 8.6 Decoders that extract frames based on the length

Name Description

FixedLengthFrameDecoder Decoder that extracts extra frames of the same fixed
size.

LengthFieldBasedFrameDecoder Decoder that extracts frames based on the size that�s
encoded in the header of the frame.

To make it clearer, let�s illustrate both of them with a figure. Figure 8.6 shows how the
FixedLengthFrameDecoder works.

Figure 8.6 Message of fixed size of 8 bytes

#1 Stream of bytes
#2 Extracted frames of 8 byte size
As shown, the FixedLengthFrameDecoder extracts frames of a fixed length, which is 8
bytes in this case.

More often you find the case where the size of the frame is encoded in the header. For this
purpose you can use the LengthFieldBasedFrameDecoder, which will read the length out
of the header and extract the frame for the length.

Figure 8.7 shows how it works.

Figure 8.7 Message that has fixed size encoded in the header

#1 Length encoded in the header of the frame
#2 Content of the frame with the encoded length
#3 Extracted frame that has the length header stripped

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

140

http://www.manning-sandbox.com/forum.jspa?forumID=857

If the length field is part of the header frame extracted, this can be configured using the
constructor of the LengthFieldBasedFrameDecoder. Also, it lets you specify where exactly
in the frame the length field is and how long it is. It�s very flexible, so for more information,
please refer to the API docs.

Because it�s easy to use the FixedLengthFrameDecoder, we�ll focus on the
LengthFieldBasedFrameDecoder.

Listing 8.12 shows how you can use the LengthFieldBasedFrameDecoder to extract
frames whose length is encoded in the first 8 bytes.

Listing 8.12 Decoder for the command and the handler
public class LengthBasedInitializer extends ChannelInitializer<Channel> {

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(
 new LengthFieldBasedFrameDecoder(65 * 1024, 0, 8)); #1
 pipeline.addLast(new FrameHandler()); #2
 }

 public static final class FrameHandler
 extends SimpleChannelInboundHandler<ByteBuf> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ByteBuf msg) throws Exception {
 // Do something with the frame #3
 }
 }
}

#1 Add LengthFieldBasedFrameDecoder to extract the frames based on the encoded length in the
header
#2 Add FrameHandler to handle the frames
#3 Do something with the frames

8.5 Writing big data
Writing big chunks of data in an efficient way is often a problem when it comes to
asynchronous frameworks, because you need to stop writing if the network is saturated or
you�d otherwise fill up memory and have a good chance of getting an OutOfMemoryError.

Netty allows you to write the contents of a file using a zero-memory-copy approach, which
means that it handles all the shuffling from the filesystem to the network stack in the kernel
space and allows the maximum performance. This only works if the content of the Fille needs
to be transfered as is (no in program modification); if not, Netty needs to copy the data into
the user space to perform the operations on it. All of this happens in the core of Netty, so you
don�t need to worry about it.

Writing a file's contents via zero-memory-copy works by writing a DefaultFileRegion to
the Channel, ChannelHandlerContext, or ChannelPipeline, as shown in listing 8.13.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

141

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 8.13 Transfer file content with FileRegion
FileInputStream in = new FileInputStream(file); #1
FileRegion region = new DefaultFileRegion(
 in.getChannel(), 0, file.length()); #2

channel.writeAndFlush(region)
 .addListener(new ChannelFutureListener() { #3
 @Override
 public void operationComplete(ChannelFuture future)
 throws Exception {
 if (!future.isSuccess()) {
 Throwable cause = future.cause(); #4
 // Do something
 }
 }
});

#1 Get FileInputStream on file
#2 Create a new DefaultFileRegion for the file starting at offset 0 and ending at the end of the file
#3 Send the DefaultFileRegion and register a ChannelFutureListener
#4 Handle failure during send

But what do you do if you don't want to send a file but some other big chunk of data?
Netty ships with a special handler, called ChunkedWriteHandler, that allows you to write

big chunks of data by handling ChunkedInput implementations. Table 8.7 shows these
implementations.

Table 8.7 Provided ChunkedInput implementations

Name Description

ChunkedFile
ChunkedInput implementation which allows you to
write a file (use only if your platform doesn�t support zero-
memory-copy).

ChunkedNioFile
ChunkedInput implementation that allows you to write
a file (use only if your platform doesn�t support zero-
memory-copy).

ChunkedNioStream ChunkedInput implementation that allows you to
transfer content from a ReadableByteChannel.

ChunkedStream ChunkedInput implementation that allows you to
transfer content from an InputStream.

The ChunkedStream implementation is the most used out there, so I�ll show its use in listing
8.14.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

142

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 8.14 Transfer file content with FileRegion
public class ChunkedWriteHandlerInitializer
 extends ChannelInitializer<Channel> {
 private final File file;

 public ChunkedWriteHandlerInitializer(File file) {
 this.file = file;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new ChunkedWriteHandler()); #1
 pipeline.addLast(new WriteStreamHandler()); #2
 }

 public final class WriteStreamHandler
 extends ChannelInboundHandlerAdapter {

 @Override
 public void channelActive(ChannelHandlerContext ctx)
 throws Exception {
 super.channelActive(ctx);
 ctx.writeAndFlush(
 new ChunkedStream(new FileInputStream(file))); #3
 }}
}

#1 Add ChunkedWriteHandler to handle ChunkedInput implementations
#2 Add WriteStreamHandler to write a ChunkedInput
#3 Write the content of the file via a ChunkedStream once the connection is established (we use a
FileInputStream only for demo purposes, any InputStream works)

8.6 Serializing data
When you want to transfer your POJOs over the network and act on them on the remote peer,
Java offers the ObjectOutputStream and ObjectInputStream and its serialization marker
interface. But there are also other options for doing this.

This section shows what Netty offers out of the box.

8.6.1 Serialization via plain JDK
If you need to talk with other peers that use ObjectOutputStream and
ObjectInputStream, and you need to keep compatibility or you don�t want to have an
external dependency, JDK Serialization is the choice. Table 8.8 explains your options.

Table 8.8 Provided JDK Serialization codec

Name Description

CompatibleObjectDecoder Uses plain JDK Serialization for decoding and can be used
with other peers that don�t use Netty.

CompatibleObjectEncoder Uses plain JDK Serialization for encoding and can be used

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

143

http://www.manning-sandbox.com/forum.jspa?forumID=857

with other peers that don�t use Netty.

CompactObjectDecoder

Uses custom serialization for decoding on top of JDK
Serialization.

Only use this if you want to gain speed but not be able to
have a dependency, in which case the other serialization
implementations are preferable.

CompactObjectEncoder

Uses custom serialization for encoding on top of JDK
Serialization.

Only use this if you want to gain speed but not be able to
have a dependency, in which case the other serialization
implementations are preferable.

8.6.2 Serialization via JBoss Marshalling
If you can take an extra dependency, JBoss Marshalling is the way to go. It�s up to three times
faster than JDK Serialization and more compact.

Netty comes with either a compatible implementation that can be used with other peers
using JDK Serialization or one that can be used for maximum speed if the other peers also use
JBoss Marshalling. Table 8.9 explains the JBoss Marshalling codecs.

Table 8.9 JBoss Marshalling codec

Name Description

CompatibleMarshallingDecoder Uses JDK Serialization for decoding and so can be used
with other peers that don�t use Netty.

CompatibleMarshallingEncoder Uses JDK Serialization for encoding and so can be used
with other peers that don�t use Netty.

MarshallingDecoder Uses custom serialization for decoding.

MarshallingEncoder Uses custom serialization for encoding.

Listing 8.15 Using JBoss Marshalling
public class MarshallingInitializer extends ChannelInitializer<Channel> {

 private final MarshallerProvider marshallerProvider;
 private final UnmarshallerProvider unmarshallerProvider;

 public MarshallingInitializer(UnmarshallerProvider unmarshallerProvider,
 MarshallerProvider marshallerProvider) {
 this.marshallerProvider = marshallerProvider;
 this.unmarshallerProvider = unmarshallerProvider;
 }
 @Override
 protected void initChannel(Channel channel) throws Exception {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

144

http://www.manning-sandbox.com/forum.jspa?forumID=857

 ChannelPipeline pipeline = channel.pipeline();
 pipeline.addLast(new MarshallingDecoder(unmarshallerProvider));
 pipeline.addLast(new MarshallingEncoder(marshallerProvider));
 pipeline.addLast(new ObjectHandler());
 }

 public static final class ObjectHandler
 extends SimpleChannelInboundHandler<Serializable> {
 @Override
 public void channelRead0(ChannelHandlerContext channelHandlerContext,
Serializable serializable) throws Exception {
 // Do something
 }
 }
}

#1 Add ChunkedWriteHandler to handle ChunkedInput implementations
#2 Add WriteStreamHandler to write a ChunkedInput
#3 Write the content of the file via a ChunkedStream once the connection is established (we use a
FileInputStream only for demo purposes, any InputStream works)

8.6.3 Serialization via ProtoBuf
The last solution for serialization that ships with Netty is a codec that makes use of ProtoBuf.

ProtoBuf was open-sourced by Google in the past and is a way to encode and decode
structured data in a compact and efficient way. It comes with different bindings for all sorts of
programming languages, making it a good fit for cross-language projects. Table 8.10 shows the
ProtoBuf implementations.

Table 8.10 Protobuf codec

Name Description

ProtobufDecoder Decode message via ProtoBufs.

ProtobufEncoder Encode message via ProtoBufs.

ProtobufVarint32FrameDecoder
A decoder that splits the received ByteBufs dynamically
by the value of the Google Protocol BuffersBase 128
Varints integer length field in the message.

Listing 8.16 Using Google Protobuf
public class ProtoBufInitializer extends ChannelInitializer<Channel> {

 private final MessageLite lite;

 public ProtoBufInitializer(MessageLite lite) {
 this.lite = lite;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new ProtobufVarint32FrameDecoder()); #1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

145

http://www.manning-sandbox.com/forum.jspa?forumID=857

 pipeline.addLast(new ProtobufEncoder()); #2
 pipeline.addLast(new ProtobufDecoder(lite)); #3
 pipeline.addLast(new ObjectHandler()); #4
 }

 public static final class ObjectHandler
 extends SimpleChannelInboundHandler<Object> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx, Object msg)
 throws Exception {
 // Do something with the object
 }
 }
}

#1 Add ProtobufVarint32FrameDecoder to break down frames
#2 Add ProtobufEncoder to handle encoding of messages
#3 Add ProtobufDecoder that decodes to messages
#4 Add ObjectHandler to handle the decoded messages

As you see, using Protobuf is an easy task. Add the right handlers in the ChannelPipeline
and you�re ready to go.

8.7 Summary
This chapter gave you a brief overview of the included codecs and handlers that you can reuse
in your application. This should help you to find your way through the provided pieces and
prevent you from reinventing the wheel.

You also saw how you�re able to combine different codecs/handlers to build up the logic that
you need, and you learned how you can extend provided implementations to adjust them for
the needed logic.

Another advantage to reusing what Netty provides is that those parts are well tested by
many users and should be robust.

This chapter only covered the most-used codecs and handlers that are bundled with Netty.
There are more; but to cover all of them would take a much bigger chapter. Please refer to
Netty�s API docs to get an overview of the rest of them.

In the next chapter we�ll look at how you bootstrap your server and combine handlers to
get things running.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

146

http://www.manning-sandbox.com/forum.jspa?forumID=857

9
Bootstrapping Netty applications

This chapter covers

 Bootstrapping clients and servers

 Bootstrapping clients from within a channel

 Adding ChannelHandlers

 Using ChannelOptions and attributes

In previous chapters you learned how to write your own ChannelHandler and codecs and
add them to the ChannelPipeline of the Channel. Now the question is: How do you
assemble all of this?

You can use bootstrapping. Netty provides you with an easy and unified way to bootstrap
your servers and clients. What is bootstrapping, and how does it fit into Netty? Bootstrapping is
the process by which you configure your Netty server and client applications. Bootstraps allow
these applications to be easily reusable.

Bootstraps are available for both client and server Netty applications. The purpose of each
is to simplify the process of combining all of the components we�ve discussed previously
(channels, pipeline, handlers, and so on). Bootstraps also provide Netty with a mechanism
which ties in these components and makes them all work in the background.

This chapter will look specifically at how the following pieces fit together in a Netty
application:

 EventLoopGroup type

 Channel type

 Set ChannelOptions

 ChannelHandler that will be called once Channel is registered

 Specify special attributes that are added on the Channel

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

147

http://www.manning-sandbox.com/forum.jspa?forumID=857

 Set local and remote address

 Bind and/or connect (depending on the type)

Once you know how to use the various bootstraps, you can use them to configure the server
and client. You�ll also learn when it makes sense to share a bootstrap instance and why, giving
you the last missing piece to be able to assemble all the parts we learned about in previous
chapters and allowing you to use Netty in your next application.

9.1 Different types of bootstrapping
Netty includes two different types of bootstraps. One is used for server-like channels that
accept connections and create �child� channels for the accepted connections. The second is for
�client-like channels� that don�t accept new connections and process everything in the �parent�
channel. Don�t get confused by �client-like channels,� as this is also true for connectionless
transports, which don�t have �child channels�.

One of those situations is when handling DatagramChannel instances. Those are used for
UDP, which is connectionless. In other words, due to the nature of UDP, when handling UDP
data it�s not necessary to have a channel per connection, as is the case with TCP connections.
Since a channel isn�t required per connection, protocol is said to be connectionless. This means
that a single channel can process all the data and no parent-child channel relationship is
required.

The two different bootstrap implementations extend from one super-class named
AbstractBootstrap. Figure 9.1 shows the hierarchy.

Figure 9.1 Bootstrap hierarchy

Many of the topics we�ve covered in previous chapters apply to both client and servers. In
order to provide a common ground for the relationship between clients and servers, Netty uses
the AbstractBootstrap class. By having a common ancestor, the client and server

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

148

http://www.manning-sandbox.com/forum.jspa?forumID=857

bootstraps discussed in this chapter are able to reuse common functionality without duplicating
code or logic.

It�s often the case that multiple channels are needed with the same or very similar settings.
Instead of creating a new bootstrap for each of these channels, Netty has made the
AbstractBootstrap cloneable. This means that a deep clone of an already configured
bootstrap will return another bootstrap which is reusable without having to be reconfigured.
Netty�s clone operation only makes a shallow copy of the bootstrap�s EventLoopGroup, which
means the EventLoopGroup is shared between all of the cloned channels. This is a good
thing, as it�s often the case that the cloned channels are short-lived, for example, a channel
created to make an HTTP request.

The rest of the chapter will focus only on Bootstrap and ServerBootstrap. Let�s have a
stab at Bootstrap first, as it�s not as complex as ServerBootstrap.

9.2 Bootstrapping clients and connectionless protocols
Whenever you need to bootstrap a client or some connectionless protocol you�ll need to use the
Bootstrap class. Working with it is easy, as we�ll learn shortly. This section includes
informations on the various methods for bootstrapping clients, explains how to bootstrap a
client, and discusses how to choose a compatible channel implementation for the client.

9.2.1 Methods for bootstrapping clients
Before we go into much detail let�s look at the various methods it provides. Table 9.1 gives

an overview of them.

Table 9.1 Methods to bootstrap

Name Description

group(...)
Set the EventLoopGroup, which should be used by the
bootstrap. This EventLoopGroup is used to serve the
I/O of the Channel.

channel(...)
channelFactory(...)

The class of the Channel to instance. If the channel can�t
be created via a no-args constructor, you can pass in a
ChannelFactory for this purpose.

localAddress(...)

The local address the Channel should be bound to. If not
specified, a random one will be used by the operating
system. Alternatively, you can specify the
localAddress on bind(...) or connect(...)

option(...)

ChannelOptions to apply on the Channel’s
ChannelConfig. Those options will be set on the
channel on the bind or connect method depending on what
is called first. Changing them after calling those methods
has no effect. Which ChannelOptions are supported

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

149

http://www.manning-sandbox.com/forum.jspa?forumID=857

depends on the actual channel you�ll use. Please refer to
the API docs of the ChannelConfig that�s used by it.

attr(...)

Allow applying attributes on the channel. Those options will
be set on the channel on the bind or connect method,
depending on what is called first. Changing them after
calling those methods has no effect.

handler(...)
Set the ChannelHandler that�s added to the
ChannelPipeline of the channel and so receive
notification for events..

clone()
Clone the Bootstrap to allow it to connect to a different
remote peer with the same settings as on the original
Bootstrap.

remoteAddress(...) Set the remote address to connect to. Alternatively, you
can also specify it when calling connect(...).

connect(...)

Connect to the remote peer and return a
ChannelFuture, which is notified once the connection
operation is complete. This can either be because it was
successful or because of an error. Be aware that this
method will also bind the Channel before.

bind(...)

Bind the channel and return a ChannelFuture, which is
notified once the bind operation is complete. This can
either be because it was successful or because of an error.
Be aware that you will need to call
Channel.connect(…) to finally connect to the remote
peer after the bind operation success.

The next section explains how bootstrapping a client works and gives an example you can
follow.

9.2.2 How to bootstrap a client
Now that you�ve been introduced to the different ways to bootstrap a client, I can show you
how it works.

The bootstrap is responsible for client and/or connectionless-based channels, so it will
create the channel after bind(...) or connect(...) is called.

Figure 9.2 shows how this works.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

150

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 9.2 Bootstrap

#1 Bootstrap will create a new channel when calling bind(..) you will then later call connect(..) on the channel
itself to establish the connection
#2 Bootstrap will create a new channel when calling connect(�)
#3 The newly created channel
Now that we know about all of the bootstrap methods, we�ll look at how you use one in action.
Listing 9.1 shows how you bootstrap a client that�s using the NIO TCP transport.

Listing 9.1 Bootstrapping a client
Bootstrap bootstrap = new Bootstrap(); #1
bootstrap.group(new NioEventLoopGroup()) #2
 .channel(NioSocketChannel.class) #3
 .handler(new SimpleChannelInboundHandler<ByteBuf>() { #4
 @Override
 protected void channeRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Reveived data");
 byteBuf.clear();
 }
 });
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80)); #5
 future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Connection established");
 } else {
 System.err.println("Connection attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
 });

#1 Create a new bootstrap to create new client channels and connect them
#2 Specify the EventLoopGroup to get EventLoops from and register with the channels
#3 Specify the channel class that will be used to instance
#4 Set a handler which will handle I/O and data for the channel
#5 Connect to the remote host with the configured bootstrap

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

151

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

As you may have noticed, all of the methods that don�t finalize the bootstrap by either binding
or connecting return a reference to the bootstrap itself. This allows for method chaining and
gives you a DSL-like way to operate on it. If you remember, this is the same as what we did in
the chapter on buffers. This is how Netty tries to keep things consistent in its API.

9.2.3 Choosing compatible channel implementations
The Channel implementation and the EventLoop that are processed by the
EventLoopGroup must be compatible. Which channel is compatible to which
EventLoopGroup can be found in the API docs. As a rule of thumb, you�ll find the compatible
pairs (EventLoop and EventLoopGroup) in the same package as the Channel
implementation itself. For example, you�d use the NioEventLoop, NioEventLoopGroup, and
NioServerSocketChannel together. Notice these are all prefixed with �Nio�. You wouldn�t,
however, substitute any of these for another implementation with another prefix such as �Oio�,
that is, OioEventLoopGroup with NioServerSocketChannel would be incompatible, for
example.

EventLoop and EventLoopGroup

Remember the EventLoop that is assigned to the Channel is responsible to handle all the
operations for the Channel. Which means when-ever you execute a method that returns a
ChannelFuture it will be executed in the EventLoop that is assigned to the Channel.

The EventLoop is executed by the Thread that is bound to it.
The EventLoopGroup contains a number of EventLoops and is responsible to assign an

EventLoop to the Channel during it�s registration.

If you try to use an incompatible EventLoopGroup it will fail, as shown in listing 9.2.

Listing 9.2 Bootstrap client with incompatible EventLoopGroup
Bootstrap bootstrap = new Bootstrap(); #1
bootstrap.group(new NioEventLoopGroup()) #2
 .channel(OioSocketChannel.class) #3
 .handler(new SimpleChannelInboundHandler<ByteBuf>() { #4
 @Override
 protected void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Reveived data");
 byteBuf.clear();
 }
 });
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80)); #5
future.syncUninterruptibly();

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

152

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 Create new bootstrap to create new client channels and connect them
#2 Specify the EventLoopGroup that will be used to get EventLoops from and register with the
channels
#3 Specify the channel class that will be used to instance. You may notice that we use the Nio version
for the EventLoopGroup and Oio for the channel
#4 Set a handler which will handle I/O and data for the channel
#5 Try to connect to the remote peer. This will throw an IllegalStateException as NioEventLoopGroup
isn�t compatible with OioSocketChannel

Setting up an implementation with an incompatible EventLoopGroup will ultimately fail with
an IllegalStateException, as shown in listing 9.3.

Listing 9.3 IllegalStateException thrown because of invalid configuration
Exception in thread "main" java.lang.IllegalStateException: incompatible
event loop type: io.netty.channel.nio.NioEventLoop #1
 at
io.netty.channel.AbstractChannel$AbstractUnsafe.register(AbstractChannel.java
:571)
 at
io.netty.channel.SingleThreadEventLoop.register(SingleThreadEventLoop.java:57
)
 at
io.netty.channel.MultithreadEventLoopGroup.register(MultithreadEventLoopGroup
.java:48)
 at
io.netty.bootstrap.AbstractBootstrap.initAndRegister(AbstractBootstrap.java:2
98)
 at io.netty.bootstrap.Bootstrap.doConnect(Bootstrap.java:133)
 at io.netty.bootstrap.Bootstrap.connect(Bootstrap.java:115)
 at
com.manning.nettyinaction.chapter9.InvalidBootstrapClient.bootstrap(InvalidBo
otstrapClient.java:30)
 at
com.manning.nettyinaction.chapter9.InvalidBootstrapClient.main(InvalidBootstr
apClient.java:36)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.
java:43)
 at java.lang.reflect.Method.invoke(Method.java:601)
 at com.intellij.rt.execution.application.AppMain.main(AppMain.java:120)

#1 IllegalStateException tells you the configuration is not compatible

Use caution when constructing new bootstrap instances. Beside this there are other situations
where an IllegalArgumentException will be thrown. This is when you haven�t specified all
the needed parameters before calling bind(…) or connect(…).

The required parameters are:

 group(...)

 channel(...) or channnelFactory(...)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

153

http://www.manning-sandbox.com/forum.jspa?forumID=857

 handler(...)

Once these parameters are provided, your application can make full use of the Netty
architecture as discussed so far. Pay special attention to the handler(...) method, as the
channel pipeline needs to be configured appropriately as discussed in previous chapters.

9.3 Bootstrapping Netty servers with ServerBootstrap
After seeing how you can bootstrap clients and connectionless-based channels, it�s time to see
how to bootstrap a server. You�ll see it�s quite similar to and also shares some logic with
bootstrapping clients. This section includes information on the various methods for
bootstrapping servers and explains how to bootstrap a server.

9.3.1 Methods for bootstrapping servers
Again, let�s first look over the provided methods of ServerBootstrap.

Table 9.2 Methods of ServerBootstrap

Name Description

group(...)

Set the EventLoopGroup, which should be used by the
ServerBootstrap. This EventLoopGroup is used to
serve the I/O of the ServerChannel and accepted
Channels.

channel(...)
channelFactory(...)

The class of the ServerChannel to instance. If the
channel can�t be created via a no-args constructor, you
can pass in a ChannelFactory for this purpose.

localAddress(...)

The local address the ServerChannel should be bound
to. If not specified, a random one will be used by the
operating system. Alternatively, you can specify the
localAddress on bind(...) or connect(...)

option(...)

ChannelOptions to apply on the ServerChannel
ChannelConfig. Those options will be set on the
channel on the bind or connect method depending on
what�s called first. Changing them after calling those
methods has no effects. Which ChannelOptions are
supported depends on the actual channel you use. Please
refer to the API docs of the ChannelConfig that is used.

childOption(...)

ChannelOptions to apply on the accepted Channels
ChannelConfig. Those options will be set on the
channels once accepted. Which ChannelOptions are
supported depends on the actual channel you use. Please
refer to the API docs of the ChannelConfig that is used.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

154

http://www.manning-sandbox.com/forum.jspa?forumID=857

attr(...)
Allow applying attributes on the ServerChannel. Those
attributes will be set on the channel on the bind(…).
Changing them after calling bind(…) has no effects

childAttr(...)

Allow applying attributes on the accepted Channels.
Those attributes will be set on the Channel once
accepted. Changing them after calling those methods has
no effects.

handler(...)

Set the ChannelHandler that is added to the
ChannelPipeline of the ServerChannel and
receive notification for events. You will not often specify
one here. More important is the childHandler(...)
when working with ServerBootstrap.

childHandler(...)

Set the ChannelHandler that�s added to the
ChannelPipeline of the accepted Channels and
receive notification for events.

The difference is between handler(…) and
childHandler(…) is that handler(…) allows to add a
handler which is processed by the �accepting�
ServerChannel, while childHandler(…) allows to
add a handler which processed by the �accepted�
Channel. The accepted Channel represents here a
bound Socket to a remote peer.

clone()
Clone the ServerBootstrap and allow using it to
connect to a different remote peer with the same settings
as on the original ServerBoostrap.

bind(...)

Bind the ServerChannel return to a ChannelFuture,
which is notified once the connection operation is
complete. This can either be because it was successful or
because of an error.

The next section explains how bootstrapping a server works and gives an example you can
follow.

9.3.2 How to bootstrap a server
As you may have noticed, the methods in the previous section are similar to what you saw in
the bootstrap class.

There is only one difference, which makes a lot of sense once you think about it. While
ServerBootstrap has handler(...), attr(...), and option(...) methods, it also
offers those with the child prefix. This is done as the ServerBootstrap bootstraps

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

155

http://www.manning-sandbox.com/forum.jspa?forumID=857

ServerChannel implementations, which are responsible for creating child channels. Those
channels represent the accepted connections. ServerBootstrap offer the child* methods in
order to make applying settings on accepted channels as easy as possible.

Figure 9.3 shows more detail about how the ServerBootstrap creates the
ServerChannel on bind(..) and this ServerChannel manages the child Channels.

Figure 9.3 ServerBootstrap

#1 Bootstrap will create a new channel when calling bind(..) . This channel will then accept child channels
once the bind is successful
#2 Accept new connections and create child channels that will serve an accepted connection
#3 Channel for an accepted connection

Remember the child* methods will operate on the child Channels, which are managed by the
ServerChannel.

To make its use clearer, let�s look at listing 9.4, which shows how to use
ServerBootstrap, which will create a NioServerSocketChannel instance once
bind(...) is called. This NioServerChannel is responsible for accepting new connections
and creating NioSocketChannel instances for them.

Listing 9.4 Bootstrapping a server
ServerBootstrap bootstrap = new ServerBootstrap(); #1
bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup()) #2
 .channel(NioServerSocketChannel.class) #3
 .childHandler(new SimpleChannelInboundHandler<ByteBuf>() { #4

 @Override
 protected void channelRead0(ChannelHandlerContext ctx,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Reveived data");
 byteBuf.clear();
 }
 });
ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080)); #5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

156

http://www.manning-sandbox.com/forum.jspa?forumID=857

future.addListener(new ChannelFutureListener() {

 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Server bound");
 } else {
 System.err.println("Bound attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
 });

#1 Create a new ServerBootstrap to create new SocketChannel channels and bind them
#2 Specify the EventLoopGroups that will be used to get EventLoops from and register with the
ServerChannel and the accepted channels
#3 Specify the channel class that will be used to instance
#4 Set a child handler which will handle I/O and data for the accepted channels
#5 Bind the channel as it�s connectionless with the configured bootstrap

9.4 Bootstrapping clients from within a channel
Sometimes situations exist when you need to bootstrap a client Channel from within another
Channel, for example, if you�re writing a proxy or need to retrieve data from other systems.
The case where you may need to fetch data from other systems is common since many Netty
applications must integrate with an organization�s existing systems. The integration could
simply be to provide a point where the Netty application authenticates with an internal system
and then queries a database.

Sure, you could create a new Bootstrap and use it as described in section 9.2.1. In fact,
there�s nothing wrong with that, it�s just not as efficient as it could be, because you�ll use
another EventLoop for the newly created client channel, and if you need to exchange data
between your accepted channel and the client channel you�ll have to do context-switching
between threads.

Fortunately Netty helps you optimize this by allowing you to pass in the EventLoop of the
accepted channel to the eventLoop(...) method of the bootstrap, thereby allowing the
client channel to operate on the same EventLoop. This eliminates all extra context switching
and works because EventLoop extends EventLoopGroup.

Besides eliminating context-switching, you are able to use the bootstrap without needing to
create more threads under the hood.

Why share the EventLoop ?

When you share the EventLoop you can be sure all Channels that are assigned to the
EventLoop are using the same Thread. Remember an EventLoop is assigned to a Thread which
execute the operations of it.

Because of using the same Thread there is no context-switching envolved and thus less
overhead.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

157

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 9.4 shows the relationship and how the same EventLoop will power both
Channels.

Figure 9.4 Share EventLoop between channels with ServerBootstrap and Bootstrap

#1 Bootstrap will create a new channel when calling bind(..) . This channel will then accept child channels
once the bind is successful
#2 Accept new connections and create child channels that will serve a accepted connection
#3 Channel for an accepted connection
#4 Bootstrap which is created by the channel itself and create a new channel once the connect operation is
called
#5 The newly created channel which is connected to the remote peer
#6 EventLoop which is shared between the channel which was created after accept and the new one that
was created by connect

Sharing the EventLoop, as shown in figure 9.4, only needs some special attention while setting
the EventLoop on the bootstrap via the Boostrap.eventLoop(...) method.

Listing 9.5 shows exactly what you need to do to handle this specific case.

Listing 9.5 Bootstrapping a server
ServerBootstrap bootstrap = new ServerBootstrap(); #1
bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup()) #2
 .channel(NioServerSocketChannel.class) #3
 .childHandler(new SimpleChannelInboundHandler<ByteBuf>() { #4
 ChannelFuture connectFuture;

 @Override

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

158

http://www.manning-sandbox.com/forum.jspa?forumID=857

 public void channelActive(ChannelHandlerContext ctx)
 throws Exception {
 Bootstrap bootstrap = new Bootstrap(); #5
 bootstrap.channel(NioSocketChannel.class) #6
 .handler(
 new SimpleChannelInboundHandler<ByteBuf>() { #7
 @Override
 protected void channelRead0(
 ChannelHandlerContext ctx,
 ByteBuf in) throws Exception {
 System.out.println("Reveived data");
 in.clear();
 }
 });

 bootstrap.group(ctx.channel().eventLoop()); #8
 connectFuture = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80)); #9
 }

 @Override
 protected void channelRead0(ChannelHandlerContext
channelHandlerContext, ByteBuf byteBuf) throws Exception {
 if (connectFuture.isDone()) {
 // do something with the data #10
 }
 }
 });

ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080)); #11
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Server bound");
 } else {
 System.err.println("Bound attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
});

#1 Create a new ServerBootstrap to create new SocketChannel channels and bind them
#2 Specify the EventLoopGroups to get EventLoops from and register with the ServerChannel and the
accepted channels
#3 Specify the channel class which will be used to instance
#4 Set a handler which will handle I/O and data for the accepted channels
#5 Create a new bootstrap to connect to remote host
#6 Set the channel class
#7 Set a handler to handle I/O
#8 Use the same EventLoop as the one that�s assigned to the accepted channel to minimize context-
switching and so on
#9 Connect to remote peer
#10 Do something with the data if the connect is complete, for example, proxy it
#11 Bind the channel as it�s connectionless with the configured bootstrap

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

159

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

This section showed how to reuse the EventLoop. Whenever possible, this resource should be
reused in Netty applications. If EventLoops are not reused, take care to ensure that not too
many instances are created, which could result in exhausting system resources.

9.5 Adding multiple ChannelHandlers during a bootstrap
In all of the code examples shown we only added one ChannelHandler during the bootstrap
process by setting the instance via handler(...) or childHandler(...). This may be
good enough for simple applications but not for more complex ones. For example, in an
application that must support multiple protocols, such as HTTP or WebSockets, a WebSocket
fallback such as SockJS or Flash sockets would require a channel handler for each. Attempting
to handle all these protocols in one channel handler would result in a large and complicated
handler. Netty simplifies this by allowing you to provide as many handlers as are required.

One of Netty�s strengths is its ability to �stack� many ChannelHandlers in the
ChannelPipeline and write reusable code. But how do you do this if you can only set one
ChannelHandler during the bootstrap process?

The answer is simple. Use only one, but use a special one . . .
For exactly this use case Netty provides a special abstract base class called

ChannelInitializer, which you can extend to initialize a channel. This ChannelHandler
will be called once the channel is registered on its EventLoop and allows you to add
ChannelHandlers to the ChannelPipeline of the channel. This special initializer
ChannelHandler will remove itself from the ChannelPipeline once it�s done with
initializing the channel.

Sounds complex? Not really. Once you�ve seen it in action in listing 9.6 it should seem as
simple as it really is.

Listing 9.6 Bootstrap and using ChannelInitializer
ServerBootstrap bootstrap = new ServerBootstrap(); #1
bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup()) #2
 .channel(NioServerSocketChannel.class) #3
 .childHandler(new ChannelInitializerImpl()); #4

ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080)); #5
future.sync();

final class ChannelInitializerImpl extends ChannelInitializer<Channel> {#6
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline(); #7
 pipeline.addLast(new HttpClientCodec());
 pipeline.addLast(new HttpObjectAggregator(Integer.MAX_VALUE));

 }
}

#1 Create a new ServerBootstrap to create new Socketchannel channels and bind them
#2 Specify the EventLoopGroups which will be used to get EventLoops from and register with the
ServerChannel and the accepted channels

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

160

http://www.manning-sandbox.com/forum.jspa?forumID=857

#3 Specify the channel class which will be used to instance
#4 Set a handler for I/O and data for the accepted channels
#5 Bind the channel as it�s connectionless with the configured bootstrap
#6 ChannelInitializer which is responsible to set up the ChannelPipeline
#7 Add needed handlers to ChannelPipeline. Once the initChannel(�) method completes the
ChannelInitializer removes itself from the ChannelPipeline.

As mentioned before, more complex applications tend to require multiple channel handlers. By
providing this special initializer as a handler, Netty allows you to insert as many channel
handlers into the pipeline as your application requires.

9.6 Using Netty ChannelOptions and attributes
It would be annoying if you had to manually configure every channel when it�s created. To
avoid this, Netty allows you to apply what are called ChannelOptions to a bootstrap. These
options are automatically applied to all channels created in the bootstrap. The various options
available allow you to configure low-level details about connections such as the channel �keep-
alive� or �timeout� properties.

Netty applications are often integrated with an organization�s proprietary software. In some
cases, Netty components, such as the channel, are passed around and used outside the normal
Netty lifecycle. In cases like these, not all the usual properties and data are available. This is
just one example, but for cases like these, Netty offers channel attributes.

Attributes allow you to associate data with channels in a safe way, and these attributes
work just as well for both client and server channels.

For example, imagine a web server application where the client has made a request. In
order to track which user a channel belongs to, the application can store the user�s ID as an
attribute of that channel. Similarly, any object or piece of data can be associated with a
channel by using attributes.

Making use of the ChannelOptions and attributes is also simple and can make things a
lot easier. For example, imagine a case where a Netty WebSocket server was automatically
routing messages depending on the user. By using attributes, the application can store the
user�s ID with the channel to determine where a message should be routed. The application
could be further automated by using a channel option which automatically terminates the
connection if no messages have been received for routing within a given time. Listing 9.7
shows what happens when an invalid configuration is run.

Listing 9.7 IllegalStateException thrown due to invalid configuration
final AttributeKey<Integer> id = new AttributeKey<Integer>("ID"); #1

Bootstrap bootstrap = new Bootstrap(); #2
bootstrap.group(new NioEventLoopGroup()) #3
 .channel(NioSocketChannel.class) #4
 .handler(new SimpleChannelInboundHandler<ByteBuf>() #5
 @Override
 public void channelRegistered(ChannelHandlerContext ctx)
 throws Exception {
 Integer idValue = ctx.channel().attr(id).get(); #6

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

161

http://www.manning-sandbox.com/forum.jspa?forumID=857

 // do something with the idValue
 }

 @Override
 protected void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Reveived data");
 byteBuf.clear();
 }
 });
bootstrap.option(ChannelOption.SO_KEEPALIVE,true)
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); #7
bootstrap.attr(id, 123456); #8
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80)); #9
future.syncUninterruptibly();

#1 Create a new AttributeKey under which we�ll store the attribute value
#2 Create a new bootstrap to create new client channels and connect them
#3 Specify the EventLoopGroup to get EventLoops from and register with the channels
#4 Specify the channel class that will be used to instance
#5 Set a handler which will handle I/O and data for the channel
#6 Retrieve the attribute with the AttributeKey and its value
#7 Set the ChannelOptions that will be set on the created channels on connect or bind
#8 Assign the attribute
#8 Connect to the remote host with the configured bootstrap

In the previous listings we used a SocketChannel in the bootstrap, which is TCP-based. As
stated before, a bootstrap is also used for connectionless protocols such as UDP. For this Netty
provides various DatagramChannel implementations. The only difference here is that you
won�t call connect(...) but only bind(...), as shown in listing 9.8.

Listing 9.8 Using Bootstrap with DatagramChannel
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(new OioEventLoopGroup()).channel(OioDatagramChannel.class)
 .handler(new SimpleChannelInboundHandler<DatagramPacket>(){

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 DatagramPacket msg) throws Exception {
 // Do something with the packet
 }
 });
ChannelFuture future = bootstrap.bind(new InetSocketAddress(0));
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Channel bound");
 } else {
 System.err.println("Bound attempt failed");
 channelFuture.cause().printStackTrace();

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

162

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

 }
 }
 });

#1 Create a new bootstrap to create new datagram channels and bind them
#2 Specify the EventLoopGroup to get EventLoops from and register with the channels
#3 Specify the channel class that will be used to instance
#4 Set a handler that will handle I/O and data for the channel
#5 Bind the channel as it�s connectionless with the configured bootstrap

Netty comes with sane default configuration settings. In many cases you won�t need to change
these, but there are situations that demand absolute fine-grained control over how your
application works and handles data. In these cases, Netty gives you the ability to provide these
detailed configurations without too much effort.

9.7 Summary
In this chapter you learned how to bootstrap your Netty-based server and client
implementation. You learned how you can specify configuration options that affect the and how
you can use attributes to attach information to a channel and use it later.

You also learned how to bootstrap connectionless protocol-based applications and how they
are different from connection-based ones.

The next chapters will focus on Netty in Action by using it to implement real-world
applications. This will help you extract all interesting pieces for reuse in your next application.

At this point you should be able to start coding!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

163

http://www.manning-sandbox.com/forum.jspa?forumID=857

10
Unit-test your code

In this Chapter

 Unit testing

 EmbeddedChannel

 As you learned in the previous chapters most of the time you implement one or more
ChannelHandler for fulfill the various steps needed to actual handle received / send
messages. But how to test that it works as expected and not break when refactor the code?

Fortunately testing your ChannelHandler implementations is quite easy as Netty offers
you two extra classes, which can be used to do this.

After reading this Chapter you will be able to master the last missing piece of make your
Netty application robust. Which is test your code�

As the shown tests use JUnit 4, a basic understanding of its usage is required. If you don�t
have it yet, take your time to read-up on using it. It�s really simple but very powerful. You can
find all needed information on the JUnit website. Beside this you also should have read the
ChannelHandler and Codec chapters, as this Chapter will focus on testing your own
implementation of a ChannelHandler or Codec.

10.1 General
As you learned before Netty offers an easy way to �stack� different ChannelHandler
implementations together and so build up its ChannelPipeline. All of the ChannelHandler
will then be evaluated while processing events.This design decision allows you to separate the
logic into small reusable implementations, which only handle one task each. This not only
makes the code cleaner but also allow to easier testing, which will be shown in this Chapter.

Testing of your ChannelHandlers is possible by using the �embedded� transport, which
allows to easy pass events trough the pipeline and so test your implementations. For this the
�embedded� transport offers a specialChannel implementation, called EmbeddedChannel..

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

164

http://www.manning-sandbox.com/forum.jspa?forumID=857

But how does it work? It�s quite simple� The EmbeddedChannel allows you to write either
inbound or outbound data into it and then check if something hit the end of the
ChannelPipeline. This allows you to check if messages where encoded/decoded or triggered
any action in your ChannelHandler.

Inbound vs Outbound

What is the difference between write inbound vs. outbound? Inbound data is processed by
ChannelInboundHandler implementations and represent data that is read from the remote
peer. Outbound data is processed by ChannelOutboundHandler implementations and
represent data that will be written to the remote peer.

Thus depending on the ChannelHandler you want to test you would chose
writeInbound(...) or writeOutbound(…) (or even both).

Those operations are provided by special methods and shown in Table 10.1.

Table 10.1 Special AbstractEmbeddedChannel methods

Name Responsibility

writeInbound(…)

Write a message to the inbound of the
Channel. This means it will get passed
through the ChannelPipeline in the
inbound direction. Returns true if something
can now be read from the
EmbeddedChannel via the readInbound()
method.

readInbound(…)

Read a message from the
EmbeddedChannel. Everything that will be
returned here processed the whole
ChannelPipeline. This method returns
null if nothing is ready to read.

writeOutbound(…)

Write a message to the outbound of the
Channel. This means it will get passed
through the ChannelPipeline in the
outbound direction. Returns true if
something can now be read from the
EmbeddedChannel via the readOutbound()
method.

readOutbound(…)
Read a message from the
EmbeddedChannel. Everything that will be

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

165

http://www.manning-sandbox.com/forum.jspa?forumID=857

returned here processed the whole
ChannelPipeline. This method returns
null if nothing is ready to read.

finish()

Mark theEmbeddedChannel as complete and
return true if something can be read from
either the inbound or outbound. This will
also call close on the Channel.

To make it even more clear how the flow is let us have a look at Figure 10.1, which shows how
messages / bytes will get passed through the ChannelPipeline by those explained methods.

Figure 10.1 Message / byte flow

As shown in Figure 10.1 you can use the writeOutbound(…) method to write a message to
the Channel and so let it pass trough the ChannelPipeline in the outbound direction. Later
then you can read the processed message with readOutbound(…) and so see if the result is
what you expect. The same is true for inbound, for which you can use writeInbound(…) and
readInbound(…). So the semantic is the same between handling outbound and inbound
processing, it always traverses the whole ChannelPipeline and then is stored in the
EmbeddedChannel if it hits the end.

With this general information it�s time to have a detailed look at both of them and see how
you can use each of them to test your logic.

10.2 Testing ChannelHandler
For testing ChannelHandler your best bet is to use EmbeddedChannel.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

166

http://www.manning-sandbox.com/forum.jspa?forumID=857

To illustrate how you can use EmbeddedChannel for testing aChannelHandler let make
use of it in this chapter and explain it with an example.

10.2.1 Testing inbound handling of messages
For this let us write a simple ByteToMessageDecoder implementation, which will produce
frames of a fixed size once enough data can be read. If enough data isn�t ready to be read it
will wait for the next chunk of data and check again if a frame can be produced. And so on�.

Figure 10.2 shows how received bytes will be re-assembled if it operates on frames with a
fixed size of 3.

Figure 10.2Decoding via FixedLengthFrameDecoder

As you can see in Figure 10.3 it may consume more than one �event� to get enough bytes to
produce a frame and pass it to the next ChannelHandler in the ChannelPipeline.

After the logic should be clear it�s time for the implementation. It�s shown in in Listing 10.1.

Listing 10.1 FixedLengthFrameDecoder implementation
public class FixedLengthFrameDecoder extends ByteToMessageDecoder { #1

 private final int frameLength;

 public FixedLengthFrameDecoder(int frameLength) { #2
 if (frameLength <= 0) {
 throw new IllegalArgumentException(
 "frameLength must be a positive integer: " +
frameLength);
 }
 this.frameLength = frameLength;
 }

 @Override
 protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object>
out) throws Exception {
while(in.readableBytes() >= frameLength) { #3
 ByteBuf buf = in.readBytes(frameLength); #4
 out.add(buf); #5
 }
 }
}

#1 Extend ByteToMessageDecoder and so handle inbound bytes and decode them to messages
#2 Specify the length of frames that should be produced
#3 Check if enough bytes are ready to read for process the next frame
#4 Read a new frame out of the ByteBuf
#5 Add the frame to the List of decoded messages.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

167

http://www.manning-sandbox.com/forum.jspa?forumID=857

Once the implementation is done it�s always a good idea to write a unit test to make sure it
works as expected. Even if you are sure you should write one just to guard yourself from
problems later as you may refactor your code at some point. This way you will be able to spot
problems before it�s deployed in production.

Now let us have a look at how this is accomplished by using the EmbeddedChannel.
Listing 10.2 shows the test case.

Listing 10.2 Test the FixedLengthFrameDecoder

public class FixedLengthFrameDecoderTest {

 @Test #1
 public void testFramesDecoded() {
 ByteBuf buf = Unpooled.buffer(); #2
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();

 EmbeddedChannel channel = new EmbeddedChannel(
new FixedLengthFrameDecoder(3)); #3
 // write bytes #4
 Assert.assertTrue(channel.writeInbound(input));

 Assert.assertTrue(channel.finish()); #5

 // read messages #6
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertNull(channel.readInbound());
 }

 @Test
 public void testFramesDecoded2() {
 ByteBuf buf = Unpooled.buffer();
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();

 EmbeddedChannel channel = new EmbeddedChannel(new
FixedLengthFrameDecoder(3));
 Assert.assertFalse(channel.writeInbound(input.readBytes(2)));
 Assert.assertTrue(channel.writeInbound(input.readBytes(7)));

 Assert.assertTrue(channel.finish());
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertEquals(buf.readBytes(3), channel.readInbound());
 Assert.assertNull(channel.readInbound());
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

168

http://www.manning-sandbox.com/forum.jspa?forumID=857

}
#1 Annotate with @Test to mark it as a test method
#2 Create a new ByteBuf and fill it with bytes
#3 Create a new EmbeddedByteChannel and feed in the FixedLengthFrameDecoder to test it
#4 Write bytes to it and check if they produced a new frame (message)
#5 Mark the channel finished
#6 Read the produced messages and test if its what was expected

To better understand what is done here let us have a deeper look at the concept and what is
done. The testFramesDecoded() method wants to test a ByteBuf, which contains 9 readable
bytes is decoded in 3 ByteBuf, which contains 3 readable bytes each. As you may notice it
writes the ByteBuf with 9 readable bytes in one call of writeInbound(…) here. After this
the finish() method is executed to mark the EmbeddedByteChannel as complete. Finally it
calls readInbound() to read the produced frames out of the EmbeddedByteChannel until
nothing can be read anymore.

The testFramesDecoded2() act the same way but with one difference. Here the inbound
ByteBufs are written in two steps. When writeInbound(input.readBytes(2)) is
called, false is returned as the FixedLengthFrameDecoder will only produce output when
at least 3 bytes are readable (as you may remember). The rest of the test works quite the
same as testFramesDecoded().

10.2.2 Testing outbound handling of messages
After you know all you need to test inbound handling of messages it�s time to review how you
would handle messages for outbound processing and test them the right way. The concept is
quite the same as when handling inbound data, but let us review this while working through an
example again.

To show how to test outbound byte processing let us implement the AbsIntegerEncoder.
What it does is the following:

 Once a flush(…) is received it will read all ints from the ByteBuf and call
Math.abs(..) on them

 Once done it write the bytes to the next ByteBuf in the
ChannelHandlerPipeline.

Figure 10.3shows the logic.

Figure 10.3 Encoding via AbsIntegerEncoder

The logic in Figure 10.4 also is the building ground for the actual implementation, which we will
use to write our tests against.

Listing 10.3 shows it in detail.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

169

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 10.3 AbsIntegerEncoder
public class AbsIntegerEncoder extends MessageToMessageEncode<ByteBuf>{
#1
 @Override
 protected void encode(ChannelHandlerContext channelHandlerContext,
ByteBuf in, List<Object>out) throws Exception {
 while (in.readableBytes() >= 4) { #2
 int value = Math.abs(in.readInt()); #3
 out.add(value); #4
 }
 }
}

#1 Extend MessageToMessageEncodeto encode a message to another message
#2 Check if there is enough bytes to encode
#3 Read the next int out of the input ByteBuf and calculate the absolute int out of it
#4 Write the intto the List of encoded messages

The implementation shown in Listing 10.3 is an exact implementation of the behavior
described. So it works the same way as shown in Figure 10.4. Again we could just rely on the
belief that it is working, but this is not what you want. A unit-test is the only way to know
everything works.

As before we make use of EmbeddedChannel again to test the AbsIntegerEncoder.

Listing 10.4 Test the AbsIntegerEncoder
public class AbsIntegerEncoderTest {

 @Test #1
 public void testEncoded() {
 ByteBuf buf = Unpooled.buffer(); #2
 for (int i = 1; i < 10; i++) {
 buf.writeInt(i * -1);
 }

 EmbeddedChannel channel = new EmbeddedChannel(
new AbsIntegerEncoder()); #3
 Assert.assertTrue(channel.writeOutbound(buf)); #4

 Assert.assertTrue(channel.finish()); #5

 // read bytes #6
 ByteBuf output = (ByteBuf) channel.readOutbound();
 for (int i = 1; i < 10; i++) {
 Assert.assertEquals(i, output.readInt());
 }
 Assert.assertFalse(output.isReadable());
 Assert.assertNull(channel.readOutbound());
 }
}

#1 Annotate with @Test to mark it as a test method
#2 Create a new ByteBuf and fill it with bytes
#3 Create a new EmbeddedChannel and feed in the AbsIntegerEncoderto test it
#4 Write bytes to it and check if they produced bytes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

170

http://www.manning-sandbox.com/forum.jspa?forumID=857

#5 Mark the channel finished
#6 Read the produced messages and test if its what was expected

What the test code does is the following:
 Create a new ByteBuf which holds 10 ints
 Create a new EmbeddedChannel
 Write the ByteBuf to the outbound of the EmbeddedChannel. Remember

MessageToMessageEncoder is a ChannelOutboundHandler which will
manipulate data that should be written to the remote per, thus we need to use
writeOutbound(…).

 Mark the channel finish
 Read all ints out of the outbound output of the EmbeddedChannel and check if it only

contain absolute ints

10.3 Testing exception handling
Sometimes transform inbound or outbound data is not enough; often you may need to also
throw for example an Exception in some situations. This may be because you guard from
malformed input or from handling to big resources or some other cause.

Again let us write an implementation, which throws a TooLongFrameException if the
input bytes are more then a given limit. Such a feature is often used to guard against resource
exhaustion.

Figure 10.4 shows how it will work if the frame size is limited to 3 bytes max.

Figure 10.4 Decoding via FrameChunkDecoder

Figure 10.4 shows the logic. As soon as the input bytes exceed a limit, the bytes are discarded
and a TooLongFrameException is thrown. The other ChannelHandler implementations in
the ChannelPipeline can then handle the TooLongFrameException or just ignore it. The
handling of the exception would be done in the ChannelHandler.exceptionCaught(…)
method, for which the ChannelHandler implementation would provide some specific
implementation.

The implementation is shown in Figure 10.5.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

171

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 10.5 FrameChunkDecoder
public class FrameChunkDecoder extends ByteToMessageDecoder { #1

 private final int maxFrameSize;

 public FrameChunkDecoder(int maxFrameSize) {
 this.maxFrameSize = maxFrameSize;
 }

 @Override
 protected void decode(ChannelHandlerContext ctx, ByteBuf in,
List<Object> out) throws Exception {
 int readableBytes = in.readableBytes(); #2
 if (readableBytes > maxFrameSize) {
 // discard the bytes #3
 in.clear();
 throw new TooLongFrameException();
 }
 ByteBuf buf = in.readBytes(readableBytes); #4
 out.add(buf); #5
 }
}

#1 Extend ByteToMessageDecoder and so handle inbound bytes and decode them to messages
#2 Specify the max size of the frames that should be produced
#3 Discard the frame if its to big and throw a new TooLongFrameException which is an Exception
provided by Netty and often used for this purpose.
#4 Read a new frame out of the ByteBuf
#5 Add the frame the List of decoded messages.

Again the best bet to test the code is to use EmbeddedChannel. The testing code is shown in
Listing 10.6.

Listing 10.6 Testing FixedLengthFrameDecoder

public class FrameChunkDecoderTest {

 @Test #1
 public void testFramesDecoded() {
 ByteBuf buf = Unpooled.buffer(); #2
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();

 EmbeddedChannel channel = new EmbeddedChannel(
new FrameChunkDecoder(3)); #3

 Assert.assertTrue(channel.writeInbound(input.readBytes(2))); #4
 try {
 channel.writeInbound(input.readBytes(4)); #5
 Assert.fail();
 } catch (TooLongFrameException e) {
 // expected

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

172

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }
 Assert.assertTrue(channel.writeInbound(input.readBytes(3)));

 Assert.assertTrue(channel.finish()); #6

 // Read frames #7
 Assert.assertEquals(buf.readBytes(2), channel.readInbound());
 Assert.assertEquals(buf.skipBytes(4).readBytes(3),
channel.readInbound());
 }
}
#1 Annotate with @Test to mark it as a test method
#2 Create a new ByteBuf and fill it with bytes
#3 Create a new EmbeddedByteChannel and feed in the FixedLengthFrameDecoder to test it
#4 Write bytes to it and check if they produced a new frame (message)
#5 Write a frame which is bigger then the max frame size and check if this cause an
TooLongFrameException
#6 Mark the channel finished
#7 Read the produced messages and test if its what was expected

At first glance this looks quite similar to the test-code we had written in Listing 10.2. But one
thing is �special� about it; the handling of the TooLongFrameException. After looking at
Listing 10.6 you should notice the try / catch block which is used here. This is one of the
�special� things of using the EmbeddedChannel. If one of the �write*� methods produce an
Exception it will be thrown directly wrapped in a RuntimeException. This way it�s easy to
test if an Exception was thrown directly.

Even if we used the EmbeddedChannel with a ByteToMessageDecoder
It should be noted that the same can be done with any ChannelHandler implementation

that throws an Exception.

10.4 Summary
In this chapter you learned how you are be able to test your custom ChannelHandler and so
make sure it works like you expected. Using the shown techniques you are now be able to
make use of JUnit and so ultimately test your code as your are used to.

Using the techniques shown in the chapter you will be able to guarantee a high quality of
your code and also guard it from misbehavior..

In the next chapters we will focus on writing �real� applications on top of Netty and so show
you how you can make real use of it. Even if the applications don�t contain any test-code
remember it is quite important to do so when you will write your next-gen application.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

173

http://www.manning-sandbox.com/forum.jspa?forumID=857

11
WebSockets

In this Chapter
 WebSockets
 ChannelHandler, Decoder and Encoder
 Bootstrap an Netty based Application
 Test WebSockets

The term �real-time-web� is everywhere these days. Most users expect to get information in
real-time while visiting their website.

Netty comes with support for WebSockets bundled, which includes different versions. This
makes it a no-brainer to use it in your next application. Because of this you will not need to
worry about the protocol internals at all. Just use it in an easy way.

In this chapter you will develop an example application, which makes use of WebSockets
and so help you to understand how you can make use of it. You will learn how you can
integrate the shown parts in your application and so re-use some of them.

11.1 WebSockets some background

11.2 The Challenge
To show the �real-time� support of WebSockets, the application will show how you can use
WebSockets in Netty to implement an IRC like chat application which can be used from within
the browser. Kind of what you may know from Facebook where you can send text-messages to
another person. But here we will go even further. In this application different users will be able
to talk to each other at the same time. So really like IRC.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

174

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 11.1 Application logic

#1 Client / User which connects to the Server and so is part of the chat
#2 Chat messages are exchanged of WebSockets
#3 Message send from Client to Server and then send from server to the clients
#4 The Server which handles all the Clients / Users

As shown in Figure 11.1 the logic is quite easy:

1 One client sends a message

2 The message is broadcasted to all other connected clients

It works just like how you would expect a chat-room to work. In this example we will only
write the server part as the client will be a browser that accesses a web-page on which the
chat-room will be displayed.

With this general idea in mind it�s time to implement it now, which is quite straight forward,
as you will see over the next pages.

11.3 Implementation
WebSockets uses the HTTP upgrade mechanism to switch from a �normal� HTTP(s) connection
to WebSockets. Because of this an application, which uses WebSockets always starts with
HTTP(s) and then perform the upgrade. When exactly the upgrade happens is specific to the
application itself. Some directly perform the upgrade as first action some does it only after a
specific url was requested.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

175

http://www.manning-sandbox.com/forum.jspa?forumID=857

In the case here we will only upgrade to WebSockets if the url ends with /ws otherwise the
server will transmit a website to the client. Once upgraded the connection will transmit all data
via WebSockets.

Figure 11.2 shows the logic.

Figure 11.2 Server logic

#1 Client / User which connects to the Server and so is part of the chat
#2 Request Website or WebSocket handshake via HTTP
#3 The Server which handles all the Clients / Users
#4 Handles responses to the uri �/�, which in this case is by send page the index.html page
#5 Handles the WebSockets upgrade if the uri �/ws� is accessed
#6 Send chat messages via WebSockets after the upgrade was complete

As always the logic will be implemented by different ChannelHandlers to make it reusable
and easy to reuse later. The next section will give you more details about the
ChannelHandlers that are needed and the various techniques they use for this purpose.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

176

http://www.manning-sandbox.com/forum.jspa?forumID=857

11.3.1 Handle http requests
As mentioned before the Server will act as a kind of hybrid to allow handling HTTP and
WebSocket at the same time. This is needed as the application also needs to serve the html
page, which is used to interact with the server and display messages that are sent via the
chatroom.

Because of this we need write a ChannelInboundHandler that will handle
FullHttpRequests if they are not sent to the /ws uri.

First have a look at Listing 11.1, which shows the implementation and then go in the details
to explain all the used �features/techniques�.

Listing 11.1 Handles HTTP requests

public class HttpRequestHandler
 extends SimpleChannelInboundHandler<FullHttpRequest> { #1
 private final String wsUri;

 public HttpRequestHandler(String wsUri) {
 this.wsUri = wsUri;
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx, FullHttpRequest
request) throws Exception {
 if (wsUri.equalsIgnoreCase(request.getUri())) {
 ctx.fireChannelRead(request.retain()); #2
 } else {
 if (HttpHeaders.is100ContinueExpected(request)) {
 send100Continue(ctx); #3
 }

 RandomAccessFile file = new
RandomAccessFile("/path/to/index.html", "r"); #4

 HttpResponse response = new DefaultHttpResponse(
 request.getProtocolVersion(), HttpResponseStatus.OK);
 response.headers().set(
 HttpHeaders.Names.CONTENT_TYPE,
 "text/plain; charset=UTF-8");

 boolean keepAlive = HttpHeaders.isKeepAlive(request);

 if (keepAlive) { #5
 response.headers().set(
 HttpHeaders.Names.CONTENT_LENGTH, file.length());
 response.headers().set(
 HttpHeaders.Names.CONNECTION,
 HttpHeaders.Values.KEEP_ALIVE);
 }
 ctx.write(response); #6

 if (ctx.pipeline().get(SslHandler.class) == null) { #7
 ctx.write(new DefaultFileRegion(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

177

http://www.manning-sandbox.com/forum.jspa?forumID=857

 file.getChannel(), 0, file.length()));
 } else {
 ctx.write(new ChunkedNioFile(file.getChannel());
 }
 ChannelFuture future = ctx.writeAndFlush(
 LastHttpContent.EMPTY_LAST_CONTENT); #8
 if (!keepAlive) {
 future.addListener(ChannelFutureListener.CLOSE); #9
 }
 }
 }

 private static void send100Continue(ChannelHandlerContext ctx) {
 FullHttpResponse response = new DefaultFullHttpResponse(
 HttpVersion.HTTP_1_1, HttpResponseStatus.CONTINUE);
 ctx.writeAndFlush(response);
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
 throws Exception {
 cause.printStackTrace();
 ctx.close();
 }
}
#1 Extend SimpleChannelInboundHandler and handle FullHttpRequest messages
#2 Check if the request is an WebSocket Upgrade request and if so retain it and pass it to the next
ChannelInboundHandler in the ChannelPipeline.
#3 Handle 100 Continue requests to conform HTTP 1.1
#4 Open the index.html file which should be written back to the client
#5 Add needed headers depending of if keepalive is used or not
#6 Write the HttpRequest to the client. Be aware that we use a HttpRequest and not a FullHttpRequest
as it is only the first part of the request. Also we not use writeAndFlush(..) as this should be done later.
#7 Write the index.html to the client. Depending on if SslHandler is in the ChannelPipeline use
DefaultFileRegion or ChunkedNioFile
#8 Write and flush the LastHttpContent to the client which marks the requests as complete.
#9 Depending on if keepalive is used close the Channel after the write completes.

The HttpRequestHandler shown in Figure 11.1 does the following:
 Check if the HTTP request was sent to the URI /ws and if so call retain() on the

FullHttpRequest and forward it to the next ChannelInboundHandler in the
ChannelPipeline by calling ChannelHandlerContext.fireChannelRead(msg).
The call of retain() is needed as after channelRead0(…) completes it will call
release() on the FullHttpRequest and so release the resources of it. Remember
this is how SimpleChannelInboundHandler works.

 Send a 100 Continue response if requested
 Write an HttpResponse back to the client after the headers are set.
 Create a new DefaultFileRegion, which holds the content of the index.html page

and write it back to the client. By doing so zero-copy is archived which gives the best
performance when transfer files over the network. Because this is only possible when

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

178

http://www.manning-sandbox.com/forum.jspa?forumID=857

no encryption / compression etc is needed it checks if the SslHandler is in the
ChannelPipeline and if so fallback to use ChunkedNioFile.

 Write a LastHttpContent to mark the end of the response and terminate it
 Add a ChannelFutureListener to the ChannelFuture of the last write if no keep-

alive is used and so close the connection. The important thing to note here is that it
called writeAndFlush(…) which means all previous written messages will also be
flushed out to the remote peer.

But this is only one part of the application; we still need to handle the WebSocket frames,
which will be used to transmit the chat messages. This will be covered in the next section.

11.3.2 Handle websocket frames
So we are already able to handle pure HTTP requests. Now it�s time for some WebSockets
action.

WebSockets support 6 different frames in the latest version. Table 11.1 shows all of them
and also lists what they are used for

Table 11.1 WebSocketFrame types

Name Description

BinaryWebSocketFrame
WebSocketFrame that contains binary data

TextWebSocketFrame
WebSocketFrame that contains text data

ContinuationWebSocketFrame
WebSocketFrame that contains text or binary data
that belongs to a previous
BinaryWebSocketFrame or TextWebSocketFrame

CloseWebSocketFrame WebSocketFrame that represent a CLOSE request
and contains close status code and a phrase

PingWebSocketFrame
WebSocketFrame which request the send of a
PongWebSocketFrame

PongWebSocketFrame
WebSocketFrame which is send as response of a
PingWebSocketFrame

For our application we are only interested in handling a few of them.
Those are:
 CloseWebSocketFrame
 PingWebSocketFrame
 PongWebSocketFrame
 TextWebSocketFrame

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

179

http://www.manning-sandbox.com/forum.jspa?forumID=857

Fortunately we only need to explicit handle the TextWebSocketFrame as the others will
automatically get handled by the WebSocketServerProtocolHandler. This makes things a
lot easier for our implementation and us.

Listing 11.2 shows the needed handling of TextWebSocketFrames.

Listing 11.2 Handles Text frames

public class TextWebSocketFrameHandler extends
 ChannelInboundMessageHandlerAdapter<TextWebSocketFrame> { #1
 private final ChannelGroup group;

 public TextWebSocketFrameHandler(ChannelGroup group) {
 this.group = group;
 }

 @Override
 public void userEventTriggered(ChannelHandlerContext ctx,
 Object evt) throws Exception { #2
 if (evt == WebSocketServerProtocolHandler
 .ServerHandshakeStateEvent.HANDSHAKE_COMPLETE) {

 ctx.pipeline().remove(HttpRequestHandler.class); #3

 group.writeAndFlush(new TextWebSocketFrame("Client " +
 ctx.channel() + " joined")); #4
 group.add(ctx.channel()); #5

 } else {
 super.userEventTriggered(ctx, evt);
 }
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 TextWebSocketFrame msg) throws Exception {
 group.writeAndFlush(msg.retain()); #6
 }
}
#1 Extend SimpleChannelInboundHandler and handle TextWebSocketFrame messages
#2 Override the userEventTriggered(�) method to handle custom events
#3 If the event is received that indicate that the handshake was successful remove the
HttpRequestHandler from the ChannelPipeline as no further HTTP messages will be send.
#4 Write a message to all connected WebSocket clients about a new Channel that is now also
connected
#5 Add the now connected WebSocket Channel to the ChannelGroup so it also receive all messages
#6 Retain the received message and write and flush it to all connected WebSocket clients.

The TextWebSocketFrameHandler shown in Figure 11.2 has again a very limited set of
responsibilities, which are:

 Once the WebSocket handshake complete successfully write a message to the
ChannelGroup, which holds all active WebSockets Channels. This means every

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

180

http://www.manning-sandbox.com/forum.jspa?forumID=857

Channel in the ChannelGroup will received it After that add the Channel to the
ChannelGroup as it is active now too

 If a TextWebSocketFrame is received, call retain() on it and write and flush it to
the ChannelGroup so every connected WebSockets Channel gets it. Calling
retain() is needed because other wise the TextWebSocketFrame would be
released once the channelRead0(…) method returned. This is a problem as
writeAndFlush(…) may complete later.

That�s almost all you need as the rest is provided by Netty itself as stated before. So the only
thing left is to provide a ChannelInitializer implementation, which will be used to
initialize the ChannelPipeline for a new Channel.

11.3.3 Initialize the ChannelPipeline
Our last task is to initialize the ChannelPipeline with all the ChannelHandlers that are
needed to get started for a new Channel / Connection. As in other chapters this is done by
extending the ChannelInitializer class and implementing the initChannel(…) method.

Listing 11.3 shows it in detail

Listing 11.3 Init the ChannelPipeline

public class ChatServerInitializer extends ChannelInitializer<Channel> {#1
 private final ChannelGroup group;

 public ChatServerInitializer(ChannelGroup group) {
 this.group = group;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception { #2

 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new HttpServerCodec());
 pipeline.addLast(new ChunkedWriteHandler());
 pipeline.addLast(new HttpObjectAggregator(64 * 1024));
 pipeline.addLast(new HttpRequestHandler("/ws"));
 pipeline.addLast(new WebSocketServerProtocolHandler("/ws"));
 pipeline.addLast(new TextWebSocketFrameHandler(group));
 }
}
#1 Extend ChannelInitializer as this should init the ChannelPipeline
#2 Add all needed ChannelHandler to the ChannelPipeline

As most of the times the initChannel(�) method setup the ChannelPipeline of the
newly registered Channel. This is done by adding the different ChannelHandler to the
ChannelPipeline that are needed to provide the logic needed.

Let us recap what handlers are added to the ChannelPipeline and what are their
responsibilities in this case.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

181

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 12.1 Responsibilities of the ChannelHandlers

Name Responsibility

HttpServerCodec
Decode bytes to HTTP requests / encode HTTP
requests to bytes.

ChunkedWriteHandler Allows to write a file content.

HttpObjectAggregator
Aggregate decoded HttpRequest / HttpContent /
LastHttpContent to FullHttpRequest. This way
you will always receive only �full� Http requests

HttpRequestHandler
Handle FullHttpRequest which are not send to
/ws URI and so serve the index.html page

WebSocketServerProtocolHandler
Handle the WebSocket upgrade and
Ping/Pong/Close WebSocket frames to be RFC
compliant

TextWebSocketFrameHandler
Handles Text frames and handshake completion
events

Something is special about the WebSocketServerProtcolHandler so it deserves a bit more
of explanation. The WebSocketServerProtocol not only handles Ping/Pong/Close frames
but also the handshake itself and so helps to �upgrade� to WebSockets.

This is done by execute the handshake and once successful modify the ChannelPipeline
and so add all the needed encoders / decoders and also remove handlers that are not needed
anymore.

To make it more clear have a look at Figure 11.3.

Figure 11.3 Server logic

Figure 11.3 shows the ChannelPipeline like it was initialized by the initChannel(…)
method of ChatServerInitializer. But things change as soon as the handshake was
completed. Once this is done the WebSocketServerProtocolHandler will take care of
replace the HttpRequestDecoder with the WebSocketFrameDecoder13 and the
HttpResponseEncoder with the WebSocketFrameEncoder13. Beside this it also remove all

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

182

http://www.manning-sandbox.com/forum.jspa?forumID=857

�unnecessary� ChannelHandlers to gain optimal performance. Those are the
HttpObjectAggregator and the HttpRequestHandler.

Figure 11.4 shows how the ChannelPipeline looks like the handshake completes.

Figure 11.4 Server logic

This is done without you even noticing it as it is executed �under the hood�. This is once
again only possible because of the very flexible way of update the ChannelPipeline on the
fly and separate tasks in different ChannelHandler implementations.

11.4 Wire things together
As always you need to wire things together to make use of them. As you learned before this is
done via bootstraping the server and setting the correct ChannelInitializer.

Listing 11.4 shows the ChatServer class, which does all of this.

Listing 11.4 Bootstrap the server

public class ChatServer {

 private final ChannelGroup channelGroup =
 new DefaultChannelGroup(ImmediateEventExecutor.INSTANCE); #1
 private final EventLoopGroup group = new NioEventLoopGroup();
 private Channel channel;

 public ChannelFuture start(InetSocketAddress address) {
 ServerBootstrap bootstrap = new ServerBootstrap(); #2
 bootstrap.group(group)
 .channel(NioServerSocketChannel.class)
 .childHandler(createInitializer(channelGroup));
 ChannelFuture future = bootstrap.bind(address);
 future.syncUninterruptibly();
 channel = future.channel();
 return future;
 }

 protected ChannelInitializer<Channel> createInitializer(
 ChannelGroup group) { #3
 return new ChatServerInitializer(group);
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

183

http://www.manning-sandbox.com/forum.jspa?forumID=857

 public void destroy() { #4
 if (channel != null) {
 channel.close();
 }
 channelGroup.close();
 group.shutdownGracefully();
 }

 public static void main(String[] args) {
 if (args.length != 1) {
 System.err.println("Please give port as argument");
 System.exit(1);
 }
 int port = Integer.parseInt(args[0]);

 final ChatServer endpoint = new ChatServer();
 ChannelFuture future = endpoint.start(new InetSocketAddress(port));

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 endpoint.destroy();
 }
 });
 future.channel().closeFuture().syncUninterruptibly();
 }
}
#1 Create DefaultChannelGroup which will hold all connected WebSocket clients
#2 Bootstrap the server
#3 Create the to be used ChannelInitializer
#4 Handle destroy of the Server and so release all resources

That�s it. It�s ready now for a test-run.
The easiest way to start up the application is to use the source-code provided for this book.

It has everything ready to use and will use maven automatically to setup everything and
download dependencies. Starting it up via mvn is as easy as shown in Listing 11.5

Listing 11.5 Compile and start ChatServer with maven

Normans-MacBook-Pro:netty-in-action-privatenorman$ mvn clean package
exec:exec -Pchapter11-ChatServer
[INFO] Scanning for projects...
[INFO]
[INFO] ---

[INFO] Building netty-in-action 0.1-SNAPSHOT
[INFO] ---

...
...
...
[INFO]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

184

http://www.manning-sandbox.com/forum.jspa?forumID=857

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action

[INFO] Building jar: /Users/norman/Documents/workspace-
intellij/netty-in-action-private/target/netty-in-action-0.1-
SNAPSHOT.jar
[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action

Now you can point your web-browser to http://localhost:9999 and access the application.
Figure 11.5 shows the interface included in the code for this chapter.

Figure 11.5 � WebSocket chat demonstration

In figure 11.5 above, we have two clients connected. The first client is connected using the
interface at the top. The second client is connected via the browser's command line at the
bottom. You'll notice that there are messages sent from both clients and each message is
displayed to both. This is a very simple example of real-time communication that WebSocket
enables in the browser.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

185

http://localhost:9999
http://www.manning-sandbox.com/forum.jspa?forumID=857

11.5 We need encryption, now!
Even as the application works quite well you may notice at some point that requirements
change. A typical change is the requirement of encryption, as you start to get concerned about
transmitted data.

Often adding this kind of new feature is not an easy task, and need big changes to the
project. But not when using Netty! It�s as easy as add the SslHandler to the
ChannelPipeline and that�s it. So more or less a �one-line� change if you ignore the fact
that you also need to configure the SslContext somehow. But this is not in scope of this
example.

There is not much you need to adjust to make it use of encryption. Thanks again to the
design of Netty�s ChannelPipeline.

Let us have a look what changes are needed. First of it�s needed to add a SslHandler to
the ChannelPipeline. Listing 11.6 extends the previous created ChatServerInitializer
to make this happen.

Listing 11.6 Init the ChannelPipeline with encryption

public class SecureChatServerIntializer extends ChatServerInitializer { #1
 private final SSLContext context;

 public SecureChatServerIntializer(ChannelGroup group, SSLContext
context) {
 super(group);
 this.context = context;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 super.initChannel(ch);
 SSLEngine engine = context.createSSLEngine();
 engine.setUseClientMode(false);
 ch.pipeline().addFirst(new SslHandler(engine)); #2
 }
}
#1 Extend the ChatServerInitializer as we want to enhance it�s functionality
#2 Add the SslHandler to the ChannelPipeline to enable encryption

That�s basically all what is needed. Now the only thing left is to adjust the ChatServer class
to use the SecureChatServerInitializer and pass in the SSLContext to use. Listing
11.7 shows how this is done.

Listing 11.7 Init the ChannelPipeline with encryption

public class SecureChatServer extends ChatServer { #1

 private final SSLContext context;

 public SecureChatServer(SSLContext context) {
 this.context = context;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

186

http://www.manning-sandbox.com/forum.jspa?forumID=857

 }

 @Override
 protected ChannelInitializer<Channel> createInitializer(
 ChannelGroup group) {
 return new SecureChatServerInitializer(group, context); #2
 }

 public static void main(String[] args) {
 if (args.length != 1) {
 System.err.println("Please give port as argument");
 System.exit(1);
 }
 int port = Integer.parseInt(args[0]);

 SSLContext context = BogusSslContextFactory.getServerContext();
 final SecureChatServer endpoint = new SecureChatServer(context);
 ChannelFuture future = endpoint.start(new InetSocketAddress(port));

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 endpoint.destroy();
 }
 });
 future.channel().closeFuture().syncUninterruptibly();
 }
}
#1 Extend ChatServer to enhance the functionality
#2 Return the previous created SecureChatServerInitializer to enable encryption

That�s all the magic needed. The application is now using SSL/TLS to encrypt the network
communication

As before you can use maven to startup the application and have it pull in all needed
dependencies. Listing 11.8 shows how to start it.

Listing 11.8 Compile and start SecureChatServer with maven

Normans-MacBook-Pro:netty-in-action-private$ mvn clean package
exec:exec -Pchapter11-SecureChatServer
[INFO] Scanning for projects...
[INFO]
[INFO] ---

[INFO] Building netty-in-action 0.1-SNAPSHOT
[INFO] ---

...
...
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

187

http://www.manning-sandbox.com/forum.jspa?forumID=857

[INFO] Building jar: /Users/norman/Documents/workspace-
intellij/netty-in-action-private/target/netty-in-action-0.1-
SNAPSHOT.jar
[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action

After it starts up you can access it via https://localhost:9999. Note that we use https
now which means the network communication is encrypted and so safe to use.

11.6 Summary
In this chapter you learned how you could make use of WebSockets in a Netty based
Application to use it for real-time data in the web.

You learned what types of data you can transmit and how you can make use of them.
Beside this you should now have an idea about why WebSockets is one of the �new big things�
out there.

Also you got a short overview about limitations which you may see while use WebSockets
and why it may not be possible to use it in all the cases.

In the next chapter you will learn about another Web 2.0 thing, which may help you to
make your service more appealing. The chapter will show you what all the hype of SPDY is
about and why you may want to support it in your next application.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

188

https://localhost:9999
http://www.manning-sandbox.com/forum.jspa?forumID=857

12
SPDY

In this Chapter we�re going to look at
 An overview of SPDY in general
 ChannelHandler, Decoder and Encoder
 Bootstrap a Netty based Application
 Test SPDY / HTTP(s)

Netty comes bundled with support for SPDY and so makes it a piece of cake to have your
application make use of it without worrying about all the protocol internals at all.

After this chapter you will know what you need to do to make your application �SPDY-
ready� and also know how to support SPDY and HTTP at the same time.

This Chapter contains everything you need to know to get the example application working
with SPDY and HTTP at the same time. While it can�t harm to have read at least the
ChannelHandler and Codec Chapter it is not needed as everything is provided here.
However, this chapter will not go into all the details that are covered in the previous chapters.

12.1 SPDY some background
SPDY was developed by Google to solve their scaling issues. One of its main tasks is to make
the �loading� of content as fast as possible.

For this SPDY does a few things:
 Every header that is transferred via SDPY gets compressed via GZIP. Compression the

body is optional as it can be problematic for Proxy servers.
 Everything is encrypted via TLS
 Multiple transfer per connection possible
 Allows you to set priority for different data enabling critical files to be transferred first

Table 12.1 shows how this compares to HTTP.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

189

http://www.manning-sandbox.com/forum.jspa?forumID=857

Table 12.1 Compare HTTP and SPDY

Browser HTTP 1.1 SPDY

Encrypted Not by default Yes

Header
Compression

No
Yes

Full-Duplexing No Yes

Server-Push No Yes

Priorities No Yes

Some benchmarks have shown that a speed up of 50% percent is possible while using SPDY
over HTTP.

While SPDY was only supported by Googe Chrome 2 years ago it is now supported in most
of the Web-browsers at the time of writing.

SPDY is currently available in 3 different versions based on Drafts:
 Draft 1
 Draft 2
 Draft 3

Netty supports Draft 2 and 3 at the moment. Those are the drafts that are supported by the
well-known Browsers.

Table 12.1 shows the browsers that support SPDY on the time of writing.

Table 12.1 Browsers

Browser Version

Chrome 19+

Chromium 19+

Mozilla Firefox 11+ (enabled by default since 13)

Opera 12.10+

12.2 The Challenge
To keep it simple we will write a very simple application, which will show you, how you can
integrate SPDY in your next application.

The application does only do one thing. It serves some static content. Based on whether its
standard HTTPS or SPDY it will write different content to the client back. The switch to SPDY
will get done automatically based on if the client (browser) supports the SPDY version, which is
provided by our server.

Figure 12.1 shows the flow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

190

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 12.1 Application logic

For this application we will only write the server component, which handles HTTPS and SPDY.
For the client side we will use a Web-browser, one that supports SPDY and one that does not,
in order to show the difference.

12.3 Implementation
SPDY uses a TLS-Extension, which is called Next Protocol Negotiation (NPN) to choose the
protocol. Using Java there are currently two different ways that allows hooking in here.

1. Use ssl_npn
2. Use NPN via the Jetty extension library

In this example we will use the jetty library to make use of SPDY. If you want to use ssl_npn
please refer to the documentation of the project.

Jetty NPN Library
The Jetty NPN Library is an external library and so not part of Netty itself. It is responsible for
the Next Protocol Negotiation, which is used to detect if the client supports SPDY or not.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

191

http://www.manning-sandbox.com/forum.jspa?forumID=857

12.3.1 Integration with Next Protocol Negotiation
The jetty library provides an interface called ServerProvider, which is used to determine the
protocol to use. The ServerProvider implementation will then allow hooking in into the
protocol selection. Depending on which HTTP versions and which SPDY versions should be
supported it may differ in terms of implementation.

Listing 12.1 shows the implementation used by this example.

Listing 12.1 Implementation of ServerProvider

public class DefaultServerProvider implements NextProtoNego.ServerProvider {
 private static final List<String> PROTOCOLS =
 Collections.unmodifiableList(
Arrays.asList("spdy/2", "spdy/3", "http/1.1")); #1

 private String protocol;

 @Override
 public void unsupported() {
 protocol = "http/1.1"; #2
 }

 @Override
 public List<String> protocols() {
 return PROTOCOLS; #3
 }

 @Override
 public void protocolSelected(String protocol) {
 this.protocol = protocol; #4
 }

 public String getSelectedProtocol() {
 return protocol; #5
 }
}
#1 Define all supported protocols by this ServerProvider implementation
#2 Set the protocol to http/1.1 if SPDY detection failed
#3 Return all the supported protocols by this ServerProvider
#4 Set the selected protocol
#5Return the previous selected protocol

For this application we want to support 3 different protocols, and so have make them selectable
in the implementation of our ServerProvider.

Those are:
 SPDY draft 2
 SPDY draft 3
 HTTP 1.1


If it fails to detect the protocol it will use HTTP 1.1 as default and so allow serving all clients
even if SPDY isn�t supported.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

192

http://www.manning-sandbox.com/forum.jspa?forumID=857

This is the only integration code that needs to get written for make use of NPN. Next on the
list is to write the actual code to make use of it.

12.3.2 Implementation of the various ChannelHandlers
Now it�s time to write the ChannelInboundMessageHandlerAdapter, which will handle
the HTTP requests for the clients that do not support SPDY.

As mentioned before SPDY is still considered very new and so not all clients support it yet.
For exactly this reason you should always provide the ability to fallback to HTTP as otherwise
you will give many users a bad experience while using your service.

Listing 12.2 shows the handler, which handles HTTP traffic

Listing 12.2Implementation which handles HTTP

@ChannelHandler.Sharable
public class HttpRequestHandler
 extends SimpleChannelInboundHandler<FullHttpRequest> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
FullHttpRequest request) throws Exception { #1
 if (HttpHeaders.is100ContinueExpected(request)) {
 send100Continue(ctx); #2
 }

 FullHttpResponse response = new DefaultFullHttpResponse(
 request.getProtocolVersion(), HttpResponseStatus.OK); #3

response.content().writeBytes(getContent()
.getBytes(CharsetUtil.UTF_8)); #4
 response.headers().set(HttpHeaders.Names.CONTENT_TYPE,
 "text/plain; charset=UTF-8"); #5

 boolean keepAlive = HttpHeaders.isKeepAlive(request);

 if (keepAlive) { #6
 response.headers().set(HttpHeaders.Names.CONTENT_LENGTH,
 response.content().readableBytes());
 response.headers().set(HttpHeaders.Names.CONNECTION,
 HttpHeaders.Values.KEEP_ALIVE);
 }
 ChannelFuture future = ctx.writeAndFlush(response); #7

 if (!keepAlive) {
 future.addListener(ChannelFutureListener.CLOSE); #8
 }
 }

 protected String getContent() { #9
 return "This content is transmitted via HTTP\r\n";
 }

 private static void send100Continue(ChannelHandlerContext ctx) { #10
 FullHttpResponse response = new DefaultFullHttpResponse(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

193

mailto:@ChannelHandler.Sharable
http://www.manning-sandbox.com/forum.jspa?forumID=857

HttpVersion.HTTP_1_1, HttpResponseStatus.CONTINUE);
 ctx.writeAndFlush(response);
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
Throwable cause)throws Exception { #11
 cause.printStackTrace();
 ctx.close();
 }
}
#1 Override the messageReceived(�) method which will be called for each FullHttpRequest that is
received
#2 Check if a Continue response is expected and if so write one
#3 Create a new FullHttpResponse which ill be used as �answer� to the request itself
#4 Generate the content of the response and write it to the paylod of it
#5 Set the header so the client knows how to interpret the payload of the response
#6 Check if the request was set with the keepalive enabled, if so set the needed headers to fulfill the
http rfc
#7 Write the response back to the client and get a reference to the future which will get notified once
the write completes
#8 If the response is not using keepalive take care of close the connection after the write completes
#9 Return the content which will be used as payload of the response
#10 Helper method to generate the 100 continue response and write it back to the client
#11 Close the channel if an exception was thrown during processing

Let us recap what the implementation in Listing 12.2 actual does:

1 The channelRead0(….) method is called once a FullHttpRequest was received.

2 A FullHttpResponse with status code 100 (continue) is written back to the client if
expected

3 A new FullHttpResponse is created with status code 200 (ok) and its payload is filled
with some content

4 Depending on if keep-alive is set in the FullHttpRequest, headers are set to the
FullHttpResponse to be RFC compliant.

5 The FullHttpResponse is written back to the client and the channel (connection) is
closed if keep-alive is not set

This is how you typically would handle HTTP with Netty. You may decide to handle URI�s
differently and may also respond with different status codes, depending on if a resource is
present or not but the concept is the same.

But wait this chapter is about SPDY, isn�t it? So while it�s nice to be able to handle HTTP as
fallback it�s still not what we want as the preferred protocol. Thanks to the provided SPDY
handlers by Netty this is a very easy.

Netty will just allow you to re-use the FullHttpRequest / FullHttpResponse
messages and transparently receive/send them via SPDY. Thus we basically can reuse our
previous written handler.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

194

http://www.manning-sandbox.com/forum.jspa?forumID=857

One thing to change is the content to write back to the client. This is mainly done to show
the difference; in real-world you may just write back the same content.

Listing 12.3 shows the implementation, which just extends the previous written
HttipRequestHandler.

Listing 12.3 Implementation which handles SPDY

public class SpdyRequestHandler extends HttpRequestHandler { #1
 @Override
 protected String getContent() {
 return "This content is transmitted via SPDY\r\n"; #2
 }
}
#1 Extends HttpRequestHandler and so share the same logic
#2 Generate the content which is written to the payload. This overrides the implementation of this
method in HttpRequestHandler.

The inner working of the SpdyRequestHandler is the same as HttpReuestHandler, as it
extends it and so share the same logic. Only with one difference; The Content, which is written
to the payload, contains the details that the response was written over SPDY.

Now with the two handlers in place it�s time to implement the logic, which will choose the
right one depending on what protocol is detected. But adding the previous written handler to
the ChannelPipeline is not enough, as the correct codecs needs to also be added. Its
responsibility is to detect the transmitted bytes and finally allow working with the
FullHttpResponse and FullHttpRequest abstraction.

Fortunately this easier than it sounds, as Netty ships with a base class which does exactly
this. All you need to do is to implement the logic to select the Protocol and which handler to
use for HTTP and which for SPDY.

Listing 12.4 shows the implementation, which makes use of the abstract base class
provided by Netty.

Listing 12.4 Implementation which handles SPDY

public class DefaultSpdyOrHttpChooser extends SpdyOrHttpChooser {

 public DefaultSpdyOrHttpChooser(int maxSpdyContentLength,
int maxHttpContentLength) {
 super(maxSpdyContentLength, maxHttpContentLength);
 }

 @Override
 protected SelectedProtocol getProtocol(SSLEngine engine) {
 DefaultServerProvider provider =
(DefaultServerProvider) NextProtoNego.get(engine); #1
 String protocol = provider.getSelectedProtocol();
 if (protocol == null) {
 return SelectedProtocol.UNKNOWN; #2
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

195

http://www.manning-sandbox.com/forum.jspa?forumID=857

 switch (protocol) {
 case "spdy/2":
 return SelectedProtocol.SPDY_2; #3
 case "spdy/3":
 return SelectedProtocol.SPDY_3; #4
 case "http/1.1":
 return SelectedProtocol.HTTP_1_1; #5
 default:
 return SelectedProtocol.UNKNOWN; #6
 }
 }

 @Override
 protected ChannelInboundHandler createHttpRequestHandlerForHttp() {
 return new HttpRequestHandler(); #7
 }

 @Override
 protected ChannelInboundHandler createHttpRequestHandlerForSpdy() {
 return new SpdyRequestHandler(); #8
 }
}

#1 Use he NextProtoNego to obtain a reference to the DefaultServerProvider which is in use for the
SslEngine
#2 The protocol could not be detected. Once more bytes are ready to read the detect process will start
again
#3 SPDY Draft 2 was detected
#4 SPDY Draft 3 was detected
#5 HTTP 1.1 was detected
#6 No known protocol detected
#7 Will be called to add the handler which will handle FullHttpRequest messages. This method is only
called if no SPDY is supported by the client and so HTTPS should be used
#8 Will be called to add the handler which will handle FullHttpRequest messages. This method is called
if SPDY is supported.

The implementation shown in 12.4 will take care of detecting the correct protocol and setting
up the ChannelPipeline for you. It only handles SPDY 2 / 3 and HTTP 1.1 but could be
adjusted to only support a specific version of SPDY etc.

12.3.3 Setuping the ChannelPipeline
With this we have everything in place and just need to wire the handlers together. This is done
by an implementation of ChannelInitializer as usual. As we learned before the
responsible for implementations of this is to setup the ChannelPipeline and so add all
needed ChannelHandlers into it.

Because of the nature of SPDY those are actual two:

1 The SslHandler, as if you remember the detection of SPDY is done via a TLS
Extension.

2 Our DefaultSpdyOrHttpChooser, which will add the correct ChannelHandlers into
the ChannelPipeline once the protocol, was detected.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

196

http://www.manning-sandbox.com/forum.jspa?forumID=857

Besides adding the ChannelHandlers to the ChannelPipeline, it has also another
responsibility. It assign the previous created DefaultServerProvider to the SslEngine
which is used by the SslHandler in the ChannelPipeline. This is done by making use of the
NextProtoNego helper class that is provided by the jetty NPN library.

Listing 12.5 shows the implementation in detail.

Listing 12.5 Implementation which handles SPDY

public class SpdyChannelInitializer extends
ChannelInitializer<SocketChannel> { #1

 private final SSLContext context;

 public SpdyChannelInitializer(SSLContext context) { #2
 this.context = context;
 }

 @Override
 protected void initChannel(SocketChannel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 SSLEngine engine = context.createSSLEngine(); #3
 engine.setUseClientMode(false); #4

 NextProtoNego.put(engine, new DefaultServerProvider()); #5
 NextProtoNego.debug = true;

 pipeline.addLast("sslHandler", new SslHandler(engine)); #6
 pipeline.addLast("chooser",
new DefaultSpdyOrHttpChooser(1024 * 1024, 1024 * 1024));#7
 }
}}
#1 Extend ChannelIntializer for an easy starting point
#2 Pass the SSLContext in which will be used to create the SSLEngines from
#3 Create a new SSLEngine which will be used for the new Channel / Connection
#4 Configure the SSLEngine for non-client usage
#5 Bind the DefaultServerProvider to the SSLEngine via the NextProtoNego helper class
#6 Add the SslHandler into the ChannelPipeline, this will stay in the ChannelPipeline even after the
protocol was detected.
#7 Add the DefaultSpyOrHttpChooser into the ChannelPipeline. This implementation will detect the
protocol, add the correct ChannelHandlers in the ChannelPipeline and remove itself.

The �real� ChannelPipeline setup is done later by the DefaultSpdyOrHttpChooser
implementation, as it is only possible to know at this point if the client supports SPDY or not.

To illustrate this let us recap and have a look at the different ChannelPipeline �states�
during the �life-time� of the connection with the client.

Figure 12.2 shows the ChannelPipeline, which will be used after the Channel is
initialized.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

197

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 12.2 ChannelPipeline after connect

Now depending on if the client supports SPDY or not it will get modified by the
DefaultSpdyOrHttpChooser to handle the protocol. The DefaultSpdyOrHttpChooser
does this by first adding the required ChannelHandlers to the ChannelPipeline and then
removing itself from the ChannelPipeline (as it is no longer needed). All this logic is
encapsulated and hidden by the abstract SpdyOrHttpChooser class, from which
DefaultSpdyOrHttpChooser extend.

Figure 12.3 shows the ChannelPipeline, which will be used if SPDY is usable for the
connected client.

Figure 12.3 ChannelPipeline if SPDY is supported

All of the added ChannelHandlers have a responsibility and fulfil a small part of the work.
This match perfectly the way you normally write Netty based Applications. Every �piece� does a
small amount of work making it re-usable and more generic.

The responsibilities of the Channelhandlers are shown in Table 12.1.

Table 12.1 Responsibilities of the ChannelHandlers

Name Responsibility

SslHandler
Encrypt / Decrypt data which is exchanged
between the two peers

SpdyFrameDecoder Decode the received bytes to SPDY frames

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

198

http://www.manning-sandbox.com/forum.jspa?forumID=857

SpdyFrameEncoder Encoder SPDY frames back to bytes

SpdySessionHandler SPDY session handling

SpdyHttpEncoder Encoder HTTP messages to SPDY frames

SpdyHttpDecoder Decoder SDPY frames into Http messages

SpdyHttpResponseStreamIdHandler
Handle the mapping between requests and
responses based on the SPDY id

SpdyRequestHandler
Handle the FullHttpRequests, which were decoded
from the SPDY frame and so allow transparent
usage of SPDY.

Like said before the ChannelPipeline will look different for when HTTP(s) is in use as the
protocol, which is exchanged differs. Figure 13.4 shows the ChannelPipeline in this case.

Figure 12.4 ChannelPipeline if SPDY is not supported

As before each of the ChannelHandlers has a responsibility, which is highlighted in Table
12.2.

Table 12.2 Responsibilities of the ChannelHandlers

Name Responsibility

SslHandler
Encrypt / Decrypt data which is exchanged
between the two peers

HttpRequestDecoder Decode the received bytes to Http requests

HttpResponseEncoder Encode Http responses to bytes

HttpObjectAggregator SPDY session handling

HttpRequestHandler Handle the FullHttpRequests, which were decoded

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

199

http://www.manning-sandbox.com/forum.jspa?forumID=857

12.3.4 Wiring things together
After all the ChannelHandler implementations are prepared the only part, which is missing is
the implementation that wires all the previous written implementation together and bootstrap
the Server.

For this purpose the SpdyServer implementation is provided as shown in Listing 12.6.

Listing 12.6 SpdyServer implementation

public class SpdyServer {

 private final NioEventLoopGroup group = new NioEventLoopGroup(); #1
 private final SSLContext context;
 private Channel channel;

 public SpdyServer(SSLContext context) { #2
 this.context = context;
 }

 public ChannelFuture start(InetSocketAddress address) {
 ServerBootstrap bootstrap = new ServerBootstrap(); #3
 bootstrap.group(group)
 .channel(NioServerSocketChannel.class)
 .childHandler(new SpdyChannelInitializer(context)); #4
 ChannelFuture future = bootstrap.bind(address); #5
 future.syncUninterruptibly();
 channel = future.channel();
 return future;
 }

 public void destroy() { #6
 if (channel != null) {
 channel.close();
 }
 group.shutdownGracefully();
 }

 public static void main(String[] args) {
 if (args.length != 1) {
 System.err.println("Please give port as argument");
 System.exit(1);
 }
 int port = Integer.parseInt(args[0]);

 SSLContext context = BogusSslContextFactory.getServerContext(); #7

 final SpdyServer endpoint = new SpdyServer(context);
 ChannelFuture future = endpoint.start(new InetSocketAddress(port));

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 endpoint.destroy();
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

200

http://www.manning-sandbox.com/forum.jspa?forumID=857

 });
 future.channel().closeFuture().syncUninterruptibly();
 }
}
#1 Construct a new NioEventLoopGroup which handles the IO
#2 Pass in the SSLContext to use for encryption
#3 Create a new ServerBootstrap to configure the server
#4 Configure the ServerBootstrap
#5 Bind the server so it accept connections
#6 Destroy the server which means it close the channel and shutdown the NioEventLoopGroup
#7 Obtain a SSLContext from BogusSslContextFactory. This is a dummy implementation which can be
used for testing purposes. For a real implementation you would configure the SslContext to use via a
proper KeyStore. Refer to the java api documentation for details.

So to be understand what it does let us have a look about the �flow�:

1 The ServerBootstrap is created and configured with the previous created
SpdyChannelInitializer. The SpdyChannelInitializer sets up the
ChannelPipeline once the Channel was accepted

2 Bind to the given InetSocketAddress and so accept connections on it.

Beside it also register a shutdown hook to release all resource once the JVM exists.
Now it�s time to actual test the SpdyServer and see if it works like expected.

12.4 Start the SpdyServer and test it
One thing that is important when you work with the jetty NPN library is that you need to pass a
special argument to the JVM when starting it. Otherwise it will not work, this is needed because
of how it hooks into the SslEngine. So while we won�t go into details how you compile the
code here be aware that once it is compiled and you start it via the java command you will
need to take special care here ensuring you set the �-Xbootclasspath� JVM argument to the
path of the npn boot JAR file. The �-Xbootclasspath� allows to override standard
implementations of classes that are shipped with the JDK itself.

Listing 12.7 shows the special argument (-Xbootclasspath) to use.

Listing 12.7 SpdyServer implementation

java -Xbootclasspath/p:<path_to_npn_boot_jar> �.

The easiest way to start up the application is to use the source-code provided for this book. It
has everything ready to use and will use maven automatically to setup everything and
download dependencies. Starting it up via mvn is as easy as shown in Listing 12.8

Listing 12.8 Compile and start SpdyServer with maven

Normans-MacBook-Pro:netty-in-action-privatenorman$ mvn clean package
exec:exec -Pchapter12-SpdyServer
[INFO] Scanning for projects...
[INFO]
[INFO] ---

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

201

http://www.manning-sandbox.com/forum.jspa?forumID=857

[INFO] Building netty-in-action 0.1-SNAPSHOT
[INFO] ---

...
...
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action

[INFO] Building jar: /Users/norman/Documents/workspace-
intellij/netty-in-action-private/target/netty-in-action-0.1-
SNAPSHOT.jar
[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action

Once the Server is successfully started it�s time to actual test it. For this purpose we will use
two different Browsers. One which supports SPDY and one which does not. At the time of
writing this is Google Chrome (supports SPDY) and Safari (not supports SPDY). But it would
also be possible to use Google Chrome and for example a unix tool like wget to test for
fallback to HTTP(s).You may get a �warning� if you use a self-signed certificate, but that�s ok.
For a production system you probability want to buy an official certificate.
Open up Google Chrome and navigate to the url �https://127.0.0.1:9999� or the matching
ipaddress / port that you used.

Figure 12.4 shows it in action.

Figure 12.5 SPDY supported by Google Chrome

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

202

https://127.0.0.1:9999%E2%80%9D
http://www.manning-sandbox.com/forum.jspa?forumID=857

If you look at Figure 12.4 you should see that it�s served via SPDY, as it use the previous
created SpdyRequestDecoder and so writes �This content is transmitted via SPDY� back to
the client.

A nice feature in Google Chrome is that you can check some statistics about SPDY with it
and so get a deeper understanding what is transmitted and how many connections are
currently handled by SPDY. For this purpose open the url �chrome://net-internals/#spdy�.

Figure 12.5 shows the statistics, which are exposed here.

Figure 12.6 SPDY statistics

This gives you an overview over all the SPDY connections, which are established. And some
more details about how many bytes are transmitted and many more. To get an even more
detailed overview about the transmitted data click on the �ID� link and refresh the window in
which you haven opened �https://127.0.0.1:9999�. This will give you details about the different
SPDY frames which are transmitted to fulfill the request.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

203

chrome://net-internals/#spdy%E2%80%9D
https://127.0.0.1:9999%E2%80%9D
http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 12.7 SPDY statistics

Going through all the details displayed in Figure 12.6 is out of scope of this book, but you
should be able to spot easily some details about which HTTP headers are transmitted and which
url was accessed. These kinds of statistics are quite useful if you debug SPDY in general.
What about the clients that do not support SPDY? Those will just be served via HTTPS and so
should not have a problem to access the resources provided by the SpdyServer.

To test this open up a browser,which does not support SPDY, which is Safari in our case.
Like before access the url �https://127.0.0.1� and see what response is written back the client
(browser).

Figure 12.7 shows it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

204

https://127.0.0.1%E2%80%9D
http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 12.8 SPDY not supported by Safari

Figure 12.7 makes it clear that it�s served via HTTP(s) as it writes back �This content is
transmitted via HTTP� to the client. This is part of the HttpRequestHandler and so should be
quite familiar to you.

12.5 Summary
In this chapter you learned how easy it is to use SPDY and HTTP(s) at the same time in a Netty
based application. The shown application should give you a good starting point to support new
clients (with support of SPDY) and the best performance while also allowing �old� clients to
access the application.

You learned how you make use of the provided helper classes for SPDY in Netty and so re-
use what is provided out of the box. Also you saw how you can use Google Chrome to get more
information about SPDY connections and so understand what happens under the hood.

The shown techniques should help you and adapt them in your next Netty based
application. Also you saw again how modification of the ChannelPipeline can help you to
build powerful �multiplexers� which allow you to switch between different protocols during one
connection.

In the next chapter you will learn how you can use UDP to write apps and make use of its
high-performance connection-less nature.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

205

http://www.manning-sandbox.com/forum.jspa?forumID=857

13
Broadcasting events via UDP

In this Chapter

 UDP in general

 ChannelHandler, Decoder and Encoder

 Bootstrap an Netty based Application

The previous chapters have focused on examples which use connection based protocols such as
TCP. In this chapter we will focus on using UDP. UDP is a connection-less protocol, which is
normally used if performance is most critical and loosing packets is not an issue. One of the
most well known UDP based protocols is DNS, which is used for domain name resolution.

Thanks to its unified Transport API, Netty makes writing UDP based applications easy as
taking a breath. This allows you to reuse existing ChannelHandlers and other utilities that
you have written for other Netty based Applications.

After this chapter you will know what is special about Connection-less Protocols, in this
case UDP. And why UDP may be a good fit for your Application.

This is a self contained chapter. You will be able to go through the chapter even without
reading other chapters of the book first. It should contain everything you need to get the
example application running an gain an understanding of UDP in Netty. While the chapter is self
contained, we won�t re-iterate previous topics in great detail. Knowing the basics of the Netty
API (as covered in earlier chapters) is more than sufficient for you to get through.

13.1 Handle UDP
Before we dive into the application the rest of this chapter focuses on, we�re take a moment to
look at UDP, what it is and the various limitations (or at least issues) that you should be aware
of before using it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

206

http://www.manning-sandbox.com/forum.jspa?forumID=857

As stated before UDP is connection-less. Which means that there is not �connection� for
the lifetime of the communication between clients and servers. So it is not so easy to say all
those messages belong to �one connection�.

Another �limitation� is that UDP has no �error correction� like TCP. In TCP if packets are
lost during transmission the peer that sends it will know because the receiver sends an
acknowledgement of packets received. Failure to receive an acknowledgement causes the peer
to re-sent the same packets again. This is not true for UDP. UDP is more like �fire and forget�,
which means it has no idea if the data sent was received at all.

Those �limitations� are one of the reasons why UDP is so fast compared to TCP. As it
eliminates all the overhead of handshaking and other overhead that comes with TCP.

Knowing this should hopefully point out to you that that UDP is only a good fit for
applications that can �handle� the case of lost messages. Which means it is not a very good fit
for applications that can�t lose any message, like an application that handles money
transactions. In the next section we�re going to design the UDP application we use for the rest
of this chapter.

13.2 UDP Application structure & Design
The rest of this chapter will write an application, which will broadcast messages via UDP to
another part, which will receive them. In this case the application opens up a file and
broadcasts every new line via UDP.

If you are familiar with UNIX-like operation systems this may sound very familiar to you
because this is what Syslog does. In fact this is a simplified version of it.

UDP is a perfect fit for such an application as it may not be to dramatic if you loose one log
line as it is stored on the base-system anyway. More importantly for the system may be the
ability to send a lot of �events� over the network.

Also one additional advantage is that by using UDP broadcast there is no extra actions
needed for adding new �monitors� that receive the log messages via UDP. All that is needed is
to fire up the instance on the specific port and you will see the log messages flow in. But this is
not only a �good thing�, as everyone will be able to get the log messages once he is able to
start an instance. This is one of the reasons why UDP broadcast should only be used in secure
environments / networks where such things are not an issue. Also be aware that broadcast
messages usually only work in the same network as routers will usually block them. These
types of applications are typically classified as �pub-sub�, where one side of the application or
service, �publishes� events and one or more others are able to �subscribe� to these events.

Before we go any further, let�s take a high-level look at the application we�re going to
build.

Figure 13.1 shows an overview over the application layout

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

207

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 13.1 Application overview

#1 Application listen for new file content
#2 Broadcast file content via UDP
#3 Print out new log content

So the Application will consist of two parts. The log file broadcaster and the �monitor�, which
will receive the broadcast. Where there could be more then one receiver.

To keep things simple we will not do any kind of authentication,verification or encryption.
If you feel the application may be a good fit for one of your needs you can adjust it for

your needs later by replacing parts of it. This should be quite simple as the logic is broken
down into easyto follow sections.

The next section will give you some insight about what you need to know about UDP and
what is the difference compared to writing TCP � protocol �based applications.

13.3 EventLog POJOs
As in other applications that are not based on Netty, you usually have some kind of �message
POJO� that is used to hold application-based information to pass around. Think of it as an
�Event message�.

For our Application we will do this too and share it between both parts of the Application.
We call it LogEvent, as it stores the event data, which was generated out of the Log file.

Listing 13.1 shows the simple POJO.

Listing 13.1 LogEvent message

public final class LogEvent {
 public static final byte SEPARATOR = (byte) ':'; #1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

208

http://www.manning-sandbox.com/forum.jspa?forumID=857

 private final InetSocketAddress source;
 private final String logfile;
 private final String msg;
 private final long received;

 public LogEvent(String logfile, String msg) { #1
 this(null, -1, logfile, msg);
 }

 public LogEvent(InetSocketAddress source, long received,
String logfile, String msg) { #2
 this.source = source;
 this.logfile = logfile;
 this.msg = msg;
 this.received = received;
 }

 public InetSocketAddress getSource() { #3
 return source;
 }

 public String getLogfile() { #4
 return logfile;
 }

 public String getMsg() { #5
 return msg;
 }

 public long getReceivedTimestamp() { #6
 return received;
 }
}
#1 Instance new LogEvent for sending purposes
#2 Instance new LogEvent for receiving pruposes
#3 Get the InetSocketAddress of the source which send the LogEvent
#4 Get the name of the log file for which the LogEvent was send
#5 Get the actual log message of the LogEvent
#6 Get the timestamp at which the LogEvent was received

With the common / shared part ready it�s time to implement the actual logic. In the next
sections we will focus on doing this.

We will start with writing the �Broadcaster� in the next section and explain how it works
exactly.

13.4 Writing the �Broadcaster�
Like illustrated before one �part� of our Application is the Log broadcaster. In this section we
will go through all the steps that are needed to write it.

What we want to do is to broadcast one DatagramPacket per Log entry as shown in
Figure 13.2.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

209

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 13.2 Log entry to DatagramPacket

#1 The Log file
#2 Alog entry in the Log file
#3 The DatagramPacket which holds the log entry

As shown in figure 13.2 this means we have a 1-to-1 relation from Log entries to
DatagramPackets.

As with all Netty based applications it consist of one or more ChannelHandler and some
entry bound that bootstrap the application.

First off let us have a look at the ChannelPipeline of the LogEventBroadcaster and
how the LogEvent (which was created before) will flow through it. Figure 13.3 gives some
high-level overview.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

210

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 13.3LogEventBroadcasterChannelPipeline and LogEvent flow

So let�s recap on Figure 13.3. The LogEventBroadcaster use LogEvent messages and write
them via the Channel on the local side. This means all the information is encapsulated in the
LogEvent messages. Those messages are then sent trough the ChannelPipeline.

While flowing through the ChannelPipeline the LogEvent messages are encoded to
DatagramPacket messages, which finally are broadcasted via UDP to the remote peers.

This boils down to the need of having one custom ChannelHandler, which encodes from
LogEvent messages to DatagramPacket messages. Remembering what we learned in
Chapter 7 (Codec API) it should be quite clear what kind of abstract base class for the
LogEventEncoder should be used to keep the amount of code to be written to the minimum
and so make it easier to maintain. If you�ve not read Chapter 7 yet, don�t worry. You will be
able to go through this chapter without it.

Listing 13.2 shows how the encoder was implemented.

Listing 13.2 LogEventEncoder

public class LogEventEncoder extends MessageToMessageEncoder<LogEvent> {
 private final InetSocketAddress remoteAddress;

 public LogEventEncoder(InetSocketAddress remoteAddress) { #1
 this.remoteAddress = remoteAddress;
 }

 @Override
 protected void encode(ChannelHandlerContext channelHandlerContext,
LogEvent logEvent, List<Object> out)
throws Exception {
 ByteBuf buf = channelHandlerContext.alloc().buffer();
 buf.writeBytes(logEvent.getLogfile()
.getBytes(CharsetUtil.UTF_8));#2
 buf.writeByte(LogEvent.SEPARATOR); #3
 buf.writeBytes(logEvent.getMsg().getBytes(CharsetUtil.UTF_8)); #4

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

211

http://www.manning-sandbox.com/forum.jspa?forumID=857

out.add(new DatagramPacket(buf, remoteAddress)); #5
 }
}
#1 Construct a new LogEventEncoder which will create DatagramPacket messages that will send to the
given InetSocketAddress
#2 Write the filename in the ByteBuf
#3 Separate it via the SEPARATOR
#4 Write the actual log message to the ByteBuf
#5 Add the DatagramPacket to the List of encoded messages.

Why MessageToMessageEncoder ?

MessageToMessageEncoder was used in Listing 13.2, as the implementation needs to encode
one Message type to another one. MessageToMessageEncoder allows this in an easy way and
so offer an easy-to-use abstract. But keep in mint MessageToMessageEncoder is just a
ChannelOutboundHandler implementation, so you could also just have implement the
ChannelOutboundHandler interface directly. MessageToMessageEncoder just makes it a lot
easier.

After we were able to build the LogEventEncoder we need to bootstrap the Application
and use it. Bootstrapping is the part of the application, which is responsible to configure the
actual Bootstrap. This includes set various ChannelOptions and some ChannelHandlers
that are used in the ChannelPipeline of the Channel.

This is done in Listing 13.3 by our LogEventBroadcaster class.

Listing 13.3LogEventBroadcaster

public class LogEventBroadcaster {
 private final EventLoopGroup group;
 private final Bootstrap bootstrap;
 private final File file;

 public LogEventBroadcaster(InetSocketAddress address,
File file) {
 group = new NioEventLoopGroup();
 bootstrap = new Bootstrap();
 bootstrap.group(group)
 .channel(NioDatagramChannel.class)
 .option(ChannelOption.SO_BROADCAST, true)
 .handler(new LogEventEncoder(address)); #1

 this.file = file;
 }

 public void run() throws IOException {
 Channel ch = bootstrap.bind(0).syncUninterruptibly().channel(); #2
 long pointer = 0;
 for (;;) {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

212

http://www.manning-sandbox.com/forum.jspa?forumID=857

 long len = file.length();
 if (len < pointer) {
 // file was reset
 pointer = len; #3
 } else if (len > pointer) {
 // Content was added
 RandomAccessFile raf = new RandomAccessFile(file, "r");
 raf.seek(pointer); #4
 String line;
 while ((line = raf.readLine()) != null) {
 ch.write(new LogEvent(null, -1,
file.getAbsolutePath(), line)); #5
 }
 pointer = raf.getFilePointer(); #6
 raf.close();
 }
 try {
 Thread.sleep(1000); #7
 } catch (InterruptedException e) {
 Thread.interrupted();
 break;
 }
 }
 }

 public void stop() {
group.shutdown();
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new IllegalArgumentException();
 }

 LogEventBroadcaster broadcaster = new LogEventBroadcaster(
new InetSocketAddress("255.255.255.255",
 Integer.parseInt(args[0])), new File(args[1])); #8
 try {
 broadcaster.run();
 } finally {
 broadcaster.stop();
 }
 }
}
#1 Bootstrap the NioDatagramChannel. It is important to set the SO_BROADCAST option as we want to
work with broadcasts
#2 Bind the Channel so we can use it. Note that there is no connect when use DatagramChannel as
those are connectionless.
#3 Set the current filepointer to the last byte of the file as we only want to broadcast new log entries
and not what was written before the application was started
#4 Set the current filepointer so nothing old is send
#5 Write a LogEvent to the Channel which holds the filename and the log entry (we exepect every
logentry is only one line long)
#6 Store the current position within the file so we can later continue here

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

213

http://www.manning-sandbox.com/forum.jspa?forumID=857

#7 Sleep for 1 second and then check if there is something new in the logfile which we can send
#8 Construct a new instance of LogEventBroadcaster and start it.

This is the point where we have the first part of our Application done. We can see the first
results at this point, event without the second part. For this let us fire up the netcat program,
which should be installed if you use a UNIX-like OS or can be installed on windows via the
available installer on the internet.

Netcat allows you to listen on a specific port and just print all data received to STDOUT.
This is perfect to test-drive our implementation.

Listing 13.4 shows how you can start Netcat to listen for UDP data on port 9090.

Listing 13.4Netcat in action

normans-macbook-pro: norman$ nc -l -u 9090

After this is done it�s time to startup LogEventBroadcaster pointing it to a log file that
changes in short intervals and using port 9090.

Once the log file gets a new entry written it will broadcast the entry via UDP, and so it will
be written out in the console in which you have started the nc command before.

Using Netcat for testing purposes is an easy thing, but not a production System. This
brings us the second part of the Application, which we will implement in the next section of this
Chapter.

13.5 Writing the �monitor�
Having the first part of the application in place it�s time to replace our Netcat usage with some
real code. For this we will develop the EventLogMonitor program in this section.

This program will do the following:

 Receive UDP DatagramPackets that was broadcasted via the LogEventBroadcaster

 Decode them to LogEvent messages

 Handle the LogEvent messages by write them to System.out

To handle the logic we will write our own ChannelHandler implementations again. Let us have a
look on the ChannelPipeline of the LogEventMonitor and how the LogEvent (which was
created before) will flow through it.

Figure 13.4 shows the details.

Figure 13.4LogEventMontorChannelPipeline and LogEvent flow

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

214

http://www.manning-sandbox.com/forum.jspa?forumID=857

In Figure 13.4 you see there are two custom ChannelHandler implementations present. Let
us give a spin on implement both of them.

The first one to implement is the LogEventDecoder. The LogEventDecoder is
responsible to decode DatagramPackets that are received over the network into LogEvent
messages. Again this is how most of your Netty applications will start if you receive data on
which you operate.

Listing 13.4 shows how the encoder implementation looks like.

Listing 13.4 LogEventDecoder

public class LogEventDecoder extends MessageToMessageDecoder<DatagramPacket>
{

 @Override
 protected void decode(ChannelHandlerContext channelHandlerContext,
DatagramPacket datagramPacket, List<Object> out)
throws Exception {
 ByteBuf data = datagramPacket.data(); #1
 int i = data.indexOf(0, data.readableBytes(),
LogEvent.SEPARATOR); #2
 String filename = data.slice(0, i)
.toString(CharsetUtil.UTF_8); #3
 String logMsg = data.slice(i + 1,
data.readableBytes()).toString(CharsetUtil.UTF_8); #4

 LogEvent event = new LogEvent(datagramPacket.remoteAddress(),
System.currentTimeMillis(),filename,logMsg); #5
out.add(event);
 }
}
#1 Get a reference to the data in the DatagramPacket
#2 Get the index of the SEPARATOR
#3 Read the filename out of the data
#4 Read the log message out of the data
#5 Construct a new LogEvent object and finally return it

Having the decoder in place it is time to write the actual handler that will do something with
the LogEvent messages. In our case we just want them to get written to System.out. In a
real-world application you may want to write them in some aggregated logfile, database or do
something useful with it. This is just to show you the moving parts.

Listing 13.5shows the LogEventHandler that writes the content of the LogEvent to
System.out.

Listing 13.4 LogEventHandler

public class LogEventHandler
extends SimpleChannelInboundHandler<LogEvent> { #1

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
Throwable cause) throws Exception {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

215

http://www.manning-sandbox.com/forum.jspa?forumID=857

 cause.printStackTrace(); #2
 ctx.close();
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
LogEvent event) throws Exception {
 StringBuilder builder = new StringBuilder(); #3
 builder.append(event.getReceivedTimestamp());
 builder.append(" [");
 builder.append(event.getSource().toString());
 builder.append("] [");
 builder.append(event.getLogfile());
 builder.append("] : ");
 builder.append(event.getMsg());

 System.out.println(builder.toString()); #4
 }
}
#1 Extend SimpleChannelInboundHandler to handle LogEvent messages
#2 Print the Stacktrace on error and close the channel
#3 Create a new StringBuilder and append the infos of the LogEvent to it
#4 Print out the LogEvent data

The LogEventHandler prints the LogEventsout in an easy to read format which consist out of
those:

 Received timestamp in milliseconds

 InetSocketAddress of the sender which consist of ip address and port

 The absolute name of the file which the LogEvent was generated from

 The actual log message, which represent on line in the log file.

Having now written the decoder and the handler, it�s time to assemble the parts to the
previously outlined ChannelPipeline.

Listing 13.5 shows how this is done as part of the LogEventMonitor class.

Listing 13.5 LogEventMonitor

public class LogEventMonitor {
 private final EventLoopGroup group;
 private final Bootstrap bootstrap;

 public LogEventMonitor(InetSocketAddress address) {
 group = new NioEventLoopGroup();
 bootstrap = new Bootstrap();
 bootstrap.group(group)
 .channel(NioDatagramChannel.class)
 .option(ChannelOption.SO_BROADCAST, true)
 .handler(new ChannelInitializer<Channel>() {
 @Override
 protected void initChannel(Channel channel)
throws Exception {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

216

http://www.manning-sandbox.com/forum.jspa?forumID=857

 ChannelPipeline pipeline = channel.pipeline();
 pipeline.addLast(new LogEventDecoder());
 pipeline.addLast(new LogEventHandler());
 }
 }).localAddress(address); #1

 }

 public Channel bind() {
 return bootstrap.bind().syncUninterruptibly().channel(); #2
 }

 public void stop() {
group.shutdown();
 }

 public static void main(String[] main) throws Exception {
 if (args.length != 1) {
 throw new IllegalArgumentException(
"Usage: LogEventMonitor <port>");
 }
 LogEventMonitor monitor = new LogEventMonitor(
new InetSocketAddress(args[0])); #3
try {
 Channel channel = monitor.bind();
 System.out.println("LogEventMonitor running");

 channel.closeFuture().await();
 } finally {
 monitor.stop();
 }
}
}
#1 Bootstrap the NioDatagramChannel. It is important to set the SO_BROADCAST option as we want to
work with broadcasts
#2 Bind the Channel so we can use it. Note that there is no connect when use DatagramChannel as
those are connectionless.
#3 Constrcut a new LogEventMonitor and use it.

13.6 Using the LogEventBroadcaster and LogEventMonitor
Having written our Application its time to see it in action. The easiest way is again to use
maven. Please see Chapter 2 if you need some guidance how to setup maven and the other
parts to run the code. I will not go into details here.

You will need to open up two different console windows as both of the Applications will
keep running until you stop them via �CRTL+C�.

First off let us start LogEventBroadcaster, which will broadcast the actual log messages via
UDP. Listing 13.5 shows how this can be done using the mvn command.

Listing 13.5 Compile and start the LogEventBroadcaster

Normans-MacBook-Pro:netty-in-action-private norman$ mvn clean package
exec:exec -Pchapter13-LogEventBroadcaster

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

217

http://www.manning-sandbox.com/forum.jspa?forumID=857

[INFO] Scanning for projects...
[INFO]
[INFO] ---

[INFO] Building netty-in-action 0.1-SNAPSHOT
[INFO] ---

...
...
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: /Users/norman/Documents/workspace-intellij/netty-in-
action-private/target/netty-in-action-0.1-SNAPSHOT.jar
[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action –
-

 LogEventBroadcaster running

By default it will use �/var/log/messages� as log file and port 9999 to send the log messages
to. If you want to change this you can do it with the logfile and port System properties when
starting the LogEventBroadcaster.

Listing 13.6 shows how you can use port 8888 and the log file �/var/log/mail.log�.

Listing 13.6 Compile and start the LogEventBroadcaster

Normans-MacBook-Pro:netty-in-action-private norman$ mvn clean package
exec:exec -Pchapter13-LogEventBroadcaster –Dport=8888 –
Dlogfile=/var/log/mail.log
....
....
[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action –
-

 LogEventBroadcaster running

When you see �LogEventBroadcaster running� you know it started up successfully. If any error
was thrown it will print out an Exception.

Having the LogEventBroadcaster running it will start to write out log messages once
those are written to the log file.

Get the Log messages sent via UDP is nice but without doing something with them its kind
of useless. So time for us to start up the LogEventMonitor to receive and handle them.
Again we will use maven for doing so as everything is prepared for it.

Listing 13.7 Compile and start the LogEventBroadcaster

Normans-MacBook-Pro:netty-in-action-private norman$ mvn clean package

exec:exec -Pchapter13-LogEventMonitor

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

218

http://www.manning-sandbox.com/forum.jspa?forumID=857

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building netty-in-action 0.1-SNAPSHOT

[INFO] ---

...

[INFO]

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---

[INFO] Building jar: /Users/norman/Documents/workspace-intellij/netty-in-

action-private/target/netty-in-action-0.1-SNAPSHOT.jar

[INFO]

[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action ---

LogEventMonitor running

When you see �LogEventMonitor running� you know it started up successfully. If any error was
thrown it will print out an Exception. Now watch the console and see how new log messages
will start to get printed in it once they are written to the log file.

Listing 13.8 shows how such an output will look like.

Listing 13.8LogEventMonitor output

1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 6714
1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: DHCPACK of 192.168.0.50 from
192.168.0.25414
1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 270
seconds.14
1364217299382 [/192.168.0.38:63182] [[/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 6714
1364217299382 [/192.168.0.38:63182] [/[/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: DHCPACK of 192.168.0.50 from
192.168.0.25414
1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 259
seconds.14
1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 6714
1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: DHCPACK of 192.168.0.50 from
192.168.0.25414

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

219

http://www.manning-sandbox.com/forum.jspa?forumID=857

1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 285
seconds.15

If you look at the output in the console you will notice it contains all the information of the
LogEvent in the format like specified in the LogEventHandler.

If you have no �real� log file to use you can also create a custom file, which will fill content
in by hand to see our Application in action.

For doing so we use UNIX commands. If you are using Windows you can just create an
empty file with notepad editor. In Listing 13.10 we first use touch to create an empty log file
which we want to broadcast the LogEvents for.

Listing 13.10 Create logfile for testing

Normans-MacBook-Pro:netty-in-action-private norman$ touch ~/mylog.log

Now having the log file in place startup the LogEventBroadcaster again and point it to it. As
you may remember you can set it via the logile System property.

Listing 13.11 shows it.

Listing 13.11 Use created logfile

Normans-MacBook-Pro:netty-in-action-private norman$ mvn clean package
exec:exec -Pchapter13-LogEventBroadcaster –Dport=8888 –Dlogfile=~/mylog.log
....

Once the LogEventBroadcaster is running again you can start to fill the log file with
messages and so see how they are broadcasted. Doing this is as easy as just using echo and
directing the output to the file.

Listing 13.12 shows how this is done.

Listing 13.12 Fill logfile with data

Normans-MacBook-Pro:netty-in-action-private norman$ echo ’Test log entry’ >>
~/mylog.log

You can repeat the echo as often as you like and see its input written in the console in which
you run the LogEventMonitor.

One thing to keep in mind again is that you can start as many instances of the monitor as
you like and watch all of them receive the same messages without the broadcaster application
changing at all.

13.7 Summary
In this chapter you learned how you will be able to use Netty to write UDP based Applications
while still using the same API as when you use TCP as underlying Transport protocol. You also
saw how you usually divide logic into different ChannelHandler and add them to the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

220

http://www.manning-sandbox.com/forum.jspa?forumID=857

ChannelPipeline. We did this by separating the decoder logic from the actual logic that
handles the message object.

You got an introduction what is special about connection-less protocols like UDP and what
is needed to know to work with them and use them in your next application.

After this last example it is time to have a deeper look in the more advanced features and
details of Netty. This will be part of the next section of the book and span several chapters.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

221

http://www.manning-sandbox.com/forum.jspa?forumID=857

14
Implement a custom codec

This chapter will show you how you can easily implement custom codecs with Netty for your
favorite protocol. Those codecs are easy to reuse and test, thanks to the flexible architecture of
Netty.

To make it easier to gasp, Memcached is used as example for a protocol, which should be
supported via the codec.

Memcached is �free & open source, high-performance, distributed memory object caching
system, generic in nature, but intended for use in speeding up dynamic web applications by
alleviating database load.� Memcached is in effect an in-memory key-value store for small
chunks of arbitrary data.

You may ask yourself �Why Memcached�?
In short, simplicity and coverage. The Memcached protocol is very straightforward; this

makes it ideal for inclusion in a single chapter, without let it become to big.

14.1 Scope of the codec
We will only implement a subset of the Memcached protocol, just enough for us to add, retrieve
and remove objects. This is supported by the SET, GET and DELETE commands, which are part
of the Memcached protocol.

Memcached supports many other commands, but focus on just three of them allows us to
better explain what is needed while keep things straight. Everything learned here could be used
to latter implement the missing commands.

Memcached has a binary and plain text protocol. Both of them can be used to communicate
with a Memcached server, depending on if the server supports either one of them or all. This
chapter focuses on implement the binary protocol as often users are faced with implement
protocols that are binary.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

222

http://www.manning-sandbox.com/forum.jspa?forumID=857

14.2 Implementing The Memcached codec
Whenever you are about to implement a codec for a given protocol, you should spend some
time to understand its workings. Often the protocol itself is documented in some great detail.
How much detail you will find here depends. Fortunately the binary protocol of Memcached is
written down in great extend.

The specification for this is written up in an RFC style document and available at
https://code.google.com/p/Memcached/wiki/MemcacheBinaryProtocol. As mention before we
won�t implement the entire protocol in this chapter instead we�re going to only implement three
operations, namely SET, GET and DELETE. This is done to keep things simple and not extend
the scope of the chapter. You can easily adapt the classes and so add support for other
operations by yourself. The shown code serves as examples and should not be taken as a full
implementation of the protocol itself.

14.3 Getting to Know the Memcached Binary Protocol
So as we said, we�re going to implement Memcached�s GET, SET and DELETE operations (also
referred to interchangeably as opcodes). We�ll focus on these but Memcached�s protocol has a
generic structure where only a few parameters change in order to change the meaning of a
request or response. This means that you can easily extend the implementation to add other
commands. In general the protocol has a 24 bytes header for requests and responses. This
header can be broken down in exactly the same order as denoted by the �Byte offset� column
in table 14.1.

Table 14.1 Sample Memcached header byte structure

Field Byte offset Value

Magic
0

0x80 for requests 0x81 for
responses

OpCode 1 0x01...0x1A

Key length 2 and 3 1... 32,767

Extra length 4 0x00, x04 or 0x08

Data type 5 0x00

Reserved 6 and 7 0x00

Total body length 8 - 11 Total size of body inclusive extras

Opaque

12 - 15

Any signed 32 bit integer, this one
will be also included in the
response and so make it easier to
map requests to responses.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

223

https://code.google.com/p/Memcached/wiki/MemcacheBinaryProtocol
http://www.manning-sandbox.com/forum.jspa?forumID=857

CAS 16 - 23 Data version check

Notice how many bytes are used in each section. This tells us what data type we should use
later. i.e. if a byte offset uses only byte 0 then we use a Java byte to represent it, if it uses 6
and 7 (2 bytes) we use a Java short, if it uses 12-15 (4 bytes) we use a Java int and so on.

Figure 14.2 � Real world Memcached request and response headers

#1 Request (only headers are shown)
#2 Response

In figure 14.2, the highlighted section 2 is the response and section 1 represents a request to
Memcached (only the request header is shown), which in this case is telling Memcached to SET
the key �a� to the value �abc�.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

224

http://www.manning-sandbox.com/forum.jspa?forumID=857

Each row in the highlighted sections represents 4 bytes; since there are 6 rows this means
the request header is made up of 24 bytes as we said before. Looking back at table 14.1, you
can begin to see how the header information from that table is represented in a real request.
For now, this is all we need to know about the Memcached binary protocol. In the next section
we need to take a look at just how we can start making these requests with Netty.

14.4 Netty Encoders and DEcoders
Netty is a complex and advanced framework but it�s not psychic. When we make a request to
set some key to a given value, we now know that an instance of the Request class is created to
represent this request. This is great and works for us but Netty has no idea how this Request
object translates to what Memcached expects. And the only thing Memcached expects is a
series of bytes, regardless of the protocol you use, the data sent over the network is always a
series of bytes.

To convert from a Request object to the series of bytes Memcached needs, Netty has what
are known as encoders, so called because they encode things such as this
MemcachedRequest class to another format. Notice I said another format, this is because
encoders don�t just encode from object to bytes, they can encode from one object to another
type of object or from an object to a string and so on. Encoders are covered in greater detail
later in chapter 7, including the various types Netty provides.

For now we�re going to focus on the type that converts from an object to a series of bytes.
To do this Netty offers an abstract class called MessageToByteEncoder. It provides an
abstract method, which should convert a message (in this case our MemcachedRequest
object) to bytes. You indicate what message your implementation can handle through use of
Java�s generics i.e. MessageToByteEncoder<MemcachedRequest> says this encoder
encodes objects of the type MemcachedRequest.

MessageToByteEncoder and Generics

As said you use Generics to tell the MessageToByteEncoder to handle specific message type.
If you want to handle many different message types with the same encoder you can also use
MessageToByteEncoder<Object>. Just be sure to do proper instance checking of the message
in this case.

All this is also true for decoders, except decoders convert a series of bytes back to an object
.For this Netty provides the ByteToMessageDecoder class which instead of encode, provides
a decode method. In the next two sections we�ll see how we can implement a Memcached
decoder and encoder. Before we do however, it�s important to realize that you don�t always
need to provide your own encoders and decoders when using Netty. We�re only doing it now
because Netty does not have built in support for Memcached. If the protocol was HTTP or

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

225

http://www.manning-sandbox.com/forum.jspa?forumID=857

another one of the many standard protocols Netty support then there would already be an
encoder and decoder provided by Netty.

Encoder vs. Decoder

Remember encoder handles outbound and decoder inbound. Which basically means the
encoder will encode data which is about to get written to the remote peer . The Decoder will
handle data which was read from the remote peer.

It�s important to remember there are two different directions related to outbound and
inbound.

Be aware that our encoder and decoder do not verify any values for max size to keep the
implementation simple. In a real world implementation you would most likely want to place in
some verification checks and raise an EncoderException or DecoderException (or a sub-
class of them) if there is protocol violation was detected.

14.4.1 Implementing the Memcached Encoder
This section puts our brief introduction to encoders into action.
As said before the encoder is responsible to encode a message into a series of bytes. Those
bytes can then be sent over the wire to the remote peer. To represent a request we ill first
create the MemcachedRequest class, which we later then encode into a series of bytes with
the actual encoder implementation.

Listing 14.1 shows our MemcachedRequest class, which represent the request.

Listing 14.1 � Implementation of a Memcached request
 public class MemcachedRequest { #1
 private static final Random rand = new Random();
 private int magic = 0x80;//fixed so hard coded
 private byte opCode; //the operation e.g. set or get
 private String key; //the key to delete, get or set
 private int flags = 0xdeadbeef; //random
 private int expires; //0 = item never expires
 private String body; //if opCode is set, the value
 private int id = rand.nextInt(); //Opaque
 private long cas; //data version check...not used
 private boolean hasExtras; //not all ops have extras

 public MemcachedRequest(byte opcode, String key, String value) {
 this.opCode = opcode;
 this.key = key;
 this.body = value == null ? "" : value;
 //only set command has extras in our example
 hasExtras = opcode == Opcode.SET;
 }

 public MemcachedRequest(byte opCode, String key) {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

226

http://www.manning-sandbox.com/forum.jspa?forumID=857

 this(opCode, key, null);
 }

 public int magic() { #2
 return magic;
 }

 public int opCode() { #3
 return opCode;
 }

 public String key() { #4
 return key;
 }

 public int flags() { #5
 return flags;
 }

 public int expires() { #6
 return expires;
 }

 public String body() { #7
 return body;
 }

 public int id() { #8
 return id;
 }

 public long cas() { #9
 return cas;
 }

 public boolean hasExtras() { #10
 return hasExtras;
 }

 }
#1 The class that represent a request which will be send to the Memcached server
#2 The magic number
ä3 The opCode which reflects for which operation the response was created
#4 The key for which the operation should be executed
#5 The extra flags used
#6 Indicate if the an expire should be used
#7 The body of any
#8 The id of the request. This id will be echoed back in the response.
#9 The compare-and-check value
#10 Returns true if any extras are used

The most important things about the MemcachedRequest class occur in the constructor,
everything else is just there for support use later. The initialization that occurs here is
reminiscent of what was shown in Table 14.1 earlier. In fact it is a direct implementation of the
fields in table 14.1. These attributes are taken directly from the Memcached protocol
specification.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

227

http://www.manning-sandbox.com/forum.jspa?forumID=857

For every request to set, get or delete, an instance of this MemcachedRequest class will
be created. This means that should you want to implement the rest of the Memcached protocol
you would only need to translate a �client.op*� (op* is any new operation you add) method to
one of these requests. Before we move on to the Netty specific code, we need two more
support classes.

Listing 14.2 � Possible Memcached operation codes and response statuses
public class Status {
 public static final short NO_ERROR = 0x0000;
 public static final short KEY_NOT_FOUND = 0x0001;
 public static final short KEY_EXISTS = 0x0002;
 public static final short VALUE_TOO_LARGE = 0x0003;
 public static final short INVALID_ARGUMENTS = 0x0004;
 public static final short ITEM_NOT_STORED = 0x0005;
 public static final short INC_DEC_NON_NUM_VAL = 0x0006;
}
public class Opcode {
 public static final byte GET = 0x00;
 public static final byte SET = 0x01;
 public static final byte DELETE = 0x04;
}

An Opcode tells Memcached which operations you wish to perform. Each operation is
represented by a single byte. Similarly, when Memcached responds to a request, the response
header contains two bytes, which represents the response status. The status and Opcode
classes represent these Memcached constructs. Those Opcodes can be used when construct a
new MemcachedRequest to specify which �Action� should be triggered by it.

But let us concentrate on the encoder for now., which will encode the previous created
MemcachedRequest class in a series of bytes. For this we extend the
MessageToByteEncoder, which is a perfect fit for this use-case.

Listing 14.3 shows the implementation in detail.

Listing 14.3 � MemcachedRequestEncoder implementation
public class MemcachedRequestEncoder extends
 MessageToByteEncoder<MemcachedRequest> { #1
 @Override
 protected void encode(ChannelHandlerContext ctx, MemcachedRequest msg,
 ByteBuf out) throws Exception {
 // convert key and body to bytes array #2
 byte[] key = msg.key().getBytes(CharsetUtil.UTF_8);
 byte[] body = msg.body().getBytes(CharsetUtil.UTF_8);
 // total size of body = key size + content size + extras size #3
 int bodySize = key.length + body.length + (msg.hasExtras() ? 8 : 0);

 // write magic byte #4
 out.writeByte(msg.magic());
 // write opcode byte #5
 out.writeByte(msg.opCode());
 // write key length (2 byte) i.e a Java short #6

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

228

http://www.manning-sandbox.com/forum.jspa?forumID=857

 out.writeShort(key.length);
 // write extras length (1 byte) #7

 int extraSize = msg.hasExtras() ? 0x08 : 0x0;
 out.writeByte(extraSize);
 // byte is the data type, not currently implemented in
 // Memcached but required #8
 out.writeByte(0);
 // next two bytes are reserved, not currently implemented
 // but are required #9
 out.writeShort(0);

 // write total body length (4 bytes - 32 bit int) #10
 out.writeInt(bodySize);
 // write opaque (4 bytes) - a 32 bit int that is returned
 // in the response #11
 out.writeInt(msg.id());

 // write CAS (8 bytes)
 // 24 byte header finishes with the CAS #12
 out.writeLong(msg.cas());

 if (msg.hasExtras()) {
 // write extras
 // (flags and expiry, 4 bytes each) - 8 bytes total #13
 out.writeInt(msg.flags());
 out.writeInt(msg.expires());
 }
 //write key #14
 out.writeBytes(key);
 //write value #15
 out.writeBytes(body);
 }
}

#1 The class that is responsible to encode the MemachedRequest into a series of bytes
#2 Convert the key and the actual body of the request into byte arrays.
#3 Calculate body size
#4 Write the magic as byte to the ByteBuf
#5 Write the opCode as byte
#6 Write the key length as short
#7 Write the extra length as byte
#8 Write the data type, which is always 0 as it is currently not used in Memcached but may be used in
later versions
#9 Write in a short for reserved bytes which may be used in later versions of Memcached
#10 Write the body size as a long
#11 Write the opaque as int
#12 Write the cas as long. This is the last field of the header, after this the body starts
#13 Write the extra flags and expire as int if there are some present
#14 Write the key
#15 Write the body. After this the request is complete.

In summary, our encoder takes a request and using the ByteBuf Netty supplies, converts the
MemcachedRequest into a correctly sequenced set of bytes.

In detail that is:

 Write magic byte

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

229

http://www.manning-sandbox.com/forum.jspa?forumID=857

 Write opcode byte

 Write key length (2 byte)

 Write extras length (1 byte)

 Write data type (1 byte)

 Write null bytes for reserved bytes (2 bytes)

 Write total body length (4 bytes - 32 bit int)

 Write opaque (4 bytes) - a 32 bit int that is returned in the response

 Write CAS (8 bytes)

 Write extras (flags and expiry, 4 bytes each) - 8 bytes total

 Write key

 Write value

Whatever you put into the output buffer (the ByteBuf called out) Netty will send to the server
the request is being written to. The next section will show how this works in reverse via
decoders.

14.4.2 Implementing the Memcached Decoder
The same way we need to convert a MemcachedRequest object to a series of bytes,
Memcached will only return bytes so we need to convert those bytes back into a response
object that we can use in our application. This is where decoders come in.

So again we first create a POJO, which is used to represent the response in an easy to use
manner.

Listing 14.7 - Implementation of a MemcachedResponse
public class MemcachedResponse { #1

 private byte magic;
 private byte opCode;
 private byte dataType;
 private short status;
 private int id;
 private long cas;
 private int flags;

 private int expires;
 private String key;
 private String data;

 public MemcachedResponse(byte magic, byte opCode,
 byte dataType, short status, int id, long cas,
 int flags, int expires, String key, String data) {
 this.magic = magic;
 this.opCode = opCode;
 this.dataType = dataType;
 this.status = status;
 this.id = id;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

230

http://www.manning-sandbox.com/forum.jspa?forumID=857

 this.cas = cas;
 this.flags = flags;
 this.expires = expires;
 this.key = key;
 this.data = data;
 }

 public byte magic() { #2
 return magic;
 }

 public byte opCode() { #3
 return opCode;
 }

 public byte dataType() { #4
 return dataType;
 }

 public short status() { #5
 return status;
 }

 public int id() { #6
 return id;
 }

 public long cas() { #7
 return cas;
 }

 public int flags() { #8
 return flags;
 }

 public int expires() { #9
 return expires;
 }

 public String key() { #10
 return key;
 }

 public String data() { #11
 return data;
 }
}

#1 The class that represent a response which was send back from the Memcached server
#2 The magic number
ä3 The opCode which reflects for which operation the response was created
#4 The data type which indicate if its binary or text based
#5 The status of the response which indicate of the request was successful etc
#6 The unique id
#7 The compare �and-set value
#8 The extra flags used
#9 Indicate if the value stored for this response will be expire at some point
#10 The key for which the response was created

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

231

http://www.manning-sandbox.com/forum.jspa?forumID=857

#11 The actual data

The previous created MemcachedResponse class will now be used in our decoder to represent
the response send back from the Memcached server. As we want to decode a series of bytes
into a MemcachedResponse we will make use of the ByteToMessageDecoder base class.

Listing 14.4 shows the MemcachedResponseDecoder in detail.

Listing 14.4 � MemcachedResponseDecoder class
public class MemcachedResponseDecoder extends ByteToMessageDecoder { #1

 private enum State { #2
 Header,
 Body
 }

 private State state = State.Header;
 private int totalBodySize;
 private byte magic;
 private byte opCode;
 private short keyLength;
 private byte extraLength;
 private byte dataType;
 private short status;
 private int id;
 private long cas;

 @Override
 protected void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) {
 switch (state) { #3
 case Header:
 if (in.readableBytes() < 24) {
 return;//response header is 24 bytes #4
 }
 // read header #5
 magic = in.readByte();
 opCode = in.readByte();
 keyLength = in.readShort();
 extraLength = in.readByte();
 dataType = in.readByte();
 status = in.readShort();
 totalBodySize = in.readInt();
 id = in.readInt(); //referred to in the protocol spec as
opaque
 cas = in.readLong();

 state = State.Body;
 // fallthrough and start to read the body
 case Body:
 if (in.readableBytes() < totalBodySize) {
 return; //until we have the entire payload return #6
 }
 int flags = 0, expires = 0;
 int actualBodySize = totalBodySize;

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

232

http://www.manning-sandbox.com/forum.jspa?forumID=857

 if (extraLength > 0) { #7
 flags = in.readInt();
 actualBodySize -= 4;
 }
 if (extraLength > 4) { #8
 expires = in.readInt();
 actualBodySize -= 4;
 }
 String key = "";
 if (keyLength > 0) { #9
 ByteBuf keyBytes = in.readBytes(keyLength);
 key = keyBytes.toString(CharsetUtil.UTF_8);
 actualBodySize -= keyLength;
 }
 ByteBuf body = in.readBytes(actualBodySize); #10
 String data = body.toString(CharsetUtil.UTF_8);
 out.add(new MemcachedResponse(#11
 magic,
 opCode,
 dataType,
 status,
 id,
 cas,
 flags,
 expires,
 key,
 data
));

 state = State.Header;
 }

 }
}

#1 The class that is responsible to create the MemcachedResponse out of the read bytes
#2 Represent current parsing state which means we either need to parse the header or body next
ä3 Switch based on the parsing state
#4 If not at least 24 bytes are readable it�s impossible to read the whole header, so return here and wait
to get notified again once more data is ready to be read
#5 Read all fields out of the header
#6 Check if enough data is readable to read the complete response body. The length was read out of
the header before
#7 Check if there are any extra flags to read and if so do it
#8 Check if the response contains an expire field and if so read it
#9 check if the response contains a key and if so read it
#10 Read the actual body payload
#11 Construct a new MemachedResponse out of the previous read fields and data

So what happened in the implementation?
We know that a Memcached response has a 24 byte header, what we don�t know is

whether all the data that makes up a response will be included in the input ByteBuf when the
decode method is called. This is because the underlying network stack may break the data into
chunks. So to ensure we only decode when we have enough data, the above code checks if the
amount of readable bytes available is at least 24 bytes. Once we have the first 24 bytes we can

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

233

http://www.manning-sandbox.com/forum.jspa?forumID=857

determine how big the entire message is because this information is contained within the 24
bytes header.

When we�ve decoded an entire message, we create a MemcachedResponse and add it to
the output list. Any object added to this list will be forwarded to the next
ChannelInboundHandler in the ChannelPipeline and so allows to process it..

14.5 Testing the codec
With the previous created encoder and decoder we have our codec in place. But there is still
something missing; Tests�

Without tests you will only see if it works when running it against some real server, which
is not what you should depend on. As seen in chapter 10 writing tests for custom
ChannelHandler is usually done via EmbeddedChannel.

So this is exactly what we do now to test our custom codec, which includes an encoder and
decoder.

Let�s us start with the encoder again. Listing 14.5 shows the simple written unit test.

Listing 14.5 � MemcachedRequestEncoderTest class

public class MemcachedRequestEncoderTest {

 @Test
 public void testMemcachedRequestEncoder() {
 MemcachedRequest request =
 new MemcachedRequest(Opcode.SET, "key1", "value1"); #1

 EmbeddedChannel channel = new EmbeddedChannel(
 new MemcachedRequestEncoder()); #2
 Assert.assertTrue(channel.writeOutbound(request)); #3

 ByteBuf encoded = (ByteBuf) channel.readOutbound();

 Assert.assertNotNull(encoded); #4
 Assert.assertEquals(request.magic(), encoded.readByte()); #5
 Assert.assertEquals(request.opCode(), encoded.readByte()); #6
 Assert.assertEquals(4, encoded.readShort()); #7
 Assert.assertEquals((byte) 0x08, encoded.readByte()); #8
 Assert.assertEquals((byte) 0, encoded.readByte()); #9
 Assert.assertEquals(0, encoded.readShort()); #10
 Assert.assertEquals(4 + 6 + 8, encoded.readInt()); #11
 Assert.assertEquals(request.id(), encoded.readInt()); #12
 Assert.assertEquals(request.cas(), encoded.readLong()); #13
 Assert.assertEquals(request.flags(), encoded.readInt()); #14
 Assert.assertEquals(request.expires(), encoded.readInt()); #15

 byte[] data = new byte[encoded.readableBytes()]; #16
 encoded.readBytes(data);
 Assert.assertArrayEquals((request.key() + request.body())
 .getBytes(CharsetUtil.UTF_8), data);
 Assert.assertFalse(encoded.isReadable()); #17

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

234

http://www.manning-sandbox.com/forum.jspa?forumID=857

 Assert.assertFalse(channel.finish());
 Assert.assertNull(channel.readInbound());
 }
}
#1 Create a new MemcachedRequest which should be encoded to a ByteBuf
#2 Create a new EmbeddedChannel which holds the MemcachedRequestEncoder to test
#3 Write the request to the channel and assert if it produced an encoded message
#4 Check if the ByteBuf is null
#5 Assert that the magic was correctly written into the ByteBuf
#6 Assert that the opCode (SET) was written correctly
#7 Check for the correct written length of the key
#8 Check if this request had extras included and so they was written
#9 Check if the data type was written
#10 Check if the reserved data was insert
#11 Check fo the total body size which is key.length + body.length + extras
#12 Check for correctly written id
#13 Check for correctly written Compare and Swap (CAS)
#14 Check for correct flags
#15 Check if expire was set
#16 Check if key and body are correct.

After tests for the encoder are in place, it�s time to take care of the tests for the decoder. As
we not know if the bytes will come in all in once or fragmented we need take special care to
test both cases.

Listing 14.6 shows the tests in detail.

Listing 14.6 � MemcachedRequestEncoderTest class

public class MemcachedResponseDecoderTest {

 @Test
 public void testMemcachedResponseDecoder() {
 EmbeddedChannel channel = new EmbeddedChannel(
 new MemcachedResponseDecoder()); #1

 byte magic = 1;
 byte opCode = Opcode.SET;
 byte dataType = 0;

 byte[] key = "Key1".getBytes(CharsetUtil.US_ASCII);
 byte[] body = "Value".getBytes(CharsetUtil.US_ASCII);
 int id = (int) System.currentTimeMillis();
 long cas = System.currentTimeMillis();

 ByteBuf buffer = Unpooled.buffer(); #2
 buffer.writeByte(magic);
 buffer.writeByte(opCode);
 buffer.writeShort(key.length);
 buffer.writeByte(0);
 buffer.writeByte(dataType);
 buffer.writeShort(Status.KEY_EXISTS);
 buffer.writeInt(body.length + key.length);
 buffer.writeInt(id);

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

235

http://www.manning-sandbox.com/forum.jspa?forumID=857

 buffer.writeLong(cas);
 buffer.writeBytes(key);
 buffer.writeBytes(body);

 Assert.assertTrue(channel.writeInbound(buffer)); #3

 MemcachedResponse response = (MemcachedResponse)
channel.readInbound();
 assertResponse(response, magic, opCode, dataType,
 Status.KEY_EXISTS, 0, 0, id, cas, key, body); #4
 }

 @Test
 public void testMemcachedResponseDecoderFragments() {
 EmbeddedChannel channel = new EmbeddedChannel(
 new MemcachedResponseDecoder()); #5

 byte magic = 1;
 byte opCode = Opcode.SET;
 byte dataType = 0;

 byte[] key = "Key1".getBytes(CharsetUtil.US_ASCII);
 byte[] body = "Value".getBytes(CharsetUtil.US_ASCII);
 int id = (int) System.currentTimeMillis();
 long cas = System.currentTimeMillis();

 ByteBuf buffer = Unpooled.buffer(); #6
 buffer.writeByte(magic);
 buffer.writeByte(opCode);
 buffer.writeShort(key.length);
 buffer.writeByte(0);
 buffer.writeByte(dataType);
 buffer.writeShort(Status.KEY_EXISTS);
 buffer.writeInt(body.length + key.length);
 buffer.writeInt(id);
 buffer.writeLong(cas);
 buffer.writeBytes(key);
 buffer.writeBytes(body);

 ByteBuf fragment1 = buffer.readBytes(8); #7
 ByteBuf fragment2 = buffer.readBytes(24);
 ByteBuf fragment3 = buffer;

 Assert.assertFalse(channel.writeInbound(fragment1)); #8
 Assert.assertFalse(channel.writeInbound(fragment2)); #9
 Assert.assertTrue(channel.writeInbound(fragment3)); #10

 MemcachedResponse response = (MemcachedResponse)
channel.readInbound();
 assertResponse(response, magic, opCode, dataType,
 Status.KEY_EXISTS, 0, 0, id, cas, key, body); #11
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

236

http://www.manning-sandbox.com/forum.jspa?forumID=857

 private static void assertResponse(MemcachedResponse response, byte
magic, byte opCode, byte dataType, short status, int expires, int flags, int
id, long cas, byte[] key, byte[] body) {
 Assert.assertEquals(magic, response.magic());
 Assert.assertArrayEquals(key,
response.key().getBytes(CharsetUtil.US_ASCII));
 Assert.assertEquals(opCode, response.opCode());
 Assert.assertEquals(dataType, response.dataType());
 Assert.assertEquals(status, response.status());
 Assert.assertEquals(cas, response.cas());
 Assert.assertEquals(expires, response.expires());
 Assert.assertEquals(flags, response.flags());
 Assert.assertArrayEquals(body,
response.data().getBytes(CharsetUtil.US_ASCII));
 Assert.assertEquals(id, response.id());
 }
}
#1 Create a new EmbeddedChannel which holds the MemcachedResponseDecoder to test
#2 Create a new Buffer and write data to it which match the structure of the binary protocol
#3 Write the buffer to the EmbeddedChannel and check if a new MemcachedResponse was created by
assert the return value
#4 Assert the MemcachedResponse with the expected values
#5 Create a new EmbeddedChannel which holds the MemcachedResponseDecoder to test
#6 Create a new Buffer and write data to it which match the structure of the binary protocol
#7 Split the Buffer into 3 fragments
#8 Write the first fragment to the EmbeddedChannel and check that no new MemcachedResponse was
created, as not all data is ready yet
#9 Write the second fragment to the EmbeddedChannel and check that no new MemcachedResponse
was created, as not all data is ready yet
#10 Write the last fragment to the EmbeddedChannel and check that a new MemcachedResponse was
created as we finally received all data.
#11 Assert the MemcachedResponse with the expected values

It�s important to note that the shown tests don�t provide full coverage but mainly �act� as
example how you would make use of the EmbeddedChannel to test your custom written
codec. How �complex� your tests need to be mainly depends on the implementation itself and
so it�s impossible to test what exactly you should test.

Anyway here are some things you should generally take care of:
 Testing with fragmented and non fragmented data
 Test validation if received data / send data if needed

14.6 Summary
After reading this chapter you should be able to create your own codec for your �favorite�
protocol. This includes writing the encoder and decoder, which convert from bytes to your
POJO and vise-versa. It shows how you can use a protocol specification and extract the needed
information for the implementation.

Beside this it shows you how you complete your work by write unit tests for the encoder
and decoder and so make sure everything works as expected without the need to run a full
Memcached Server. This allows easy integration of tests into the build-system.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

237

http://www.manning-sandbox.com/forum.jspa?forumID=857

15
Choosing the right thread model

This chapter covers

 Details about the thread-model

 EventLoop

 Concurrency

 Task execution

 Task scheduling

The thread model defines how the application or framework executes your code, so it�s
important to choose the right thread model for the application/framework. Netty comes with an
easy but powerful thread model that helps you simplify your code, because Netty takes care of
all the needed synchronization in its core. All of your ChannelHandlers, which contain your
business logic, are guaranteed to be executed by a single thread at the same time for a specific
Channel. This doesn�t mean Netty fails to use multithreading, but it does limit each connection
to one thread as this design works well for nonblocking execution. This means there�s no need
for you to think about any of the issues you often have when working with multithreaded
applications. You�ll never again worry about ConcurrentModificationException and
other problems such as stale data, locking, and so on, that you often have when developing
with other frameworks.

After reading this chapter you�ll have a deep understanding of Netty�s thread model and
why the Netty team chose it over other models. With this information you�ll be able to get the
best performance out of an application that uses Netty under the hood. Besides this, it will also
help you keep your codebase clean, as the thread model makes it easy to write clean and
simple code. You�ll learn from the Netty team�s experience, which used another thread model in
the past and recently switched to the one explained here to make development with Netty even
easier and more powerful.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

238

http://www.manning-sandbox.com/forum.jspa?forumID=857

Although this chapter covers Netty�s internals, you can still use it for a general
understanding of thread models and how to choose the perfect thread model for your next
application.

This chapter assumes the following:

 You understand what threads are used for and have experience working with them.

If that�s not the case, please take time to gain this knowledge to make sure everything
is clear to you. A good reference is Java Concurrency in Practice by Brian Goetz.

 You understand multithreaded applications and their designs.

This also includes what it takes to keep them thread-safe while trying to get the best
performance out of them.

 Knowledge of the java.util.concurrent package and its provided facilities via the
ExecutorService and ScheduledExecutorService is a plus but not strictly
needed.

15.1 Thread model overview
In this section you�ll get a brief introduction to thread models in general, how Netty uses the
specific thread model now, and how Netty used thread models in previous versions. You�ll be
better able to understand all the pros and cons of the different thread models.

If you think about it for a second, you may notice many situations in your normal life where
you use a kind of thread model. To give you an analogy, think about it as a rule that enforces a
behavior. Here�s a real-world example.

You have a restaurant where you serve food to your customers. This food needs to be
cooked in the kitchen before it�s served. Once a customer orders food, you send a task to the
kitchen that holds information that food X needs to be cooked. In your kitchen you can handle
this in different ways�each of which would be like a thread model that defines how the task is
executed.

 One cook prepares one meal at a time:

This approach is single-threaded, which means only one task is executed at a time. After
it�s finished, the next order will get handled, and so on.

 You have multiple cooks. Each cook will cook the meal that needs to be prepared if he�s
not cooking anything else at the moment:

This meal is multithreaded, as the tasks are handled by multiple threads (cooks). Many
tasks can be executed at the same time.

 You have multiple cooks separated into groups. One group cooks dinner and one group
cooks everything else:

This situation is also multithreaded, but comes with extra restrictions. Many tasks are
executed at the same time but are separated by the type of actual task (dinner vs. every
other meal).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

239

http://www.manning-sandbox.com/forum.jspa?forumID=857

You see, even daily events fit well in a thread model. But how does Netty fit in here?
Unfortunately it�s not so simple, as Netty�s core is multithreaded but hides most of this from
the user. While Netty uses multiple threads to do all the work, only a single thread-like thread
model is exposed to the user.

Before going into more detail, let�s get a better understanding of the topic by revisiting
what most applications do these days.

Most modern applications use more than one thread to dispatch work and therefore let the
application use all of the system�s available resources in an efficient manner. In the early days
of Java, this was done by simply creating new threads on demand and starting them when
work was required to be done in parallel.

But it soon turned out that this isn�t perfect, because creating threads and recycling them
comes with overhead. In Java 5 we finally got thread pools, which were defined by the
Executor interface. Java 5 shipped many useful implementations, which vary significantly in
their internals, but the idea is the same on all of them. They create threads and reuse them
when a task is submitted for execution. This helps keep the overhead of creating and recycling
threads to a minimum.

Figure 15.1 shows the how a thread pool is used to execute a task. It submits a task that
will be executed by one free thread and once it�s complete it frees up the thread again.

Figure 15.1 Executor execution logic

#1 Runnable which represents the task to execute. This could be anything from a database call to file
system cleanup
#2 Previous runnable gets hand-over to the thread pool
#3 A free Thread is picked and the task is executed with it. When a thread has completed running it is
put back into the list of free threads to be reused when a new task needs to be run
#4 Threads that execute tasks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

240

http://www.manning-sandbox.com/forum.jspa?forumID=857

This fixes the overhead of thread creation and recycling by not requiring new threads to be
created and destroyed with each new task, but is only half of the problem, as we�ll learn later.

You may ask yourself why not use many threads all the time, now that an
ExecutorService will help prevent the cost of creating and deallocating threads?

Using multiple threads comes with the cost of managing resources and, as a side effect,
introduces too much context switching. This gets worse with the number of threads that run
and the number of tasks to execute. While using multiple threads may not seem like a problem
at the beginning, it can hit you hard once you put real workload on the system.

In addition to these technical limitations and problems, other problems can occur that are
more related to maintaining your application/framework in the future or during the lifetime of
the project. It�s valid to say that the complexity of your application rises depending on how
parallel it is. To state it simply: Writing a multithreaded application is a hard job! What can we
do to solve this problem? You need multiple threads to scale for real-world scenarios; that�s a
fact. Let�s see how Netty solves this problem.

15.2 The event loop
The event loop does exactly what its name says. It runs events in a loop until it�s terminated.
This fits well in the design of network frameworks as they need to run events for a specific
connection in a loop when these occur. This isn�t something new that Netty invented; other
frameworks and implementations have been doing this for ages.

The event loop is represented by the EventLoop interface in Netty. As an EventLoop
extends from EventExecutor, which extends from ScheduledExecutorService, it�s
possible to also directly hand over a task that will get executed in the EventLoop on its next
run.

EventExecutor , EventLoop and ScheduledExecutorService

Netty provides EventExecutor (which the class EventLoop extends) which extends Java�s
ScheduledExecutorService. So it is possible to hand a Task directly to an EventLoop instance
and that task will be executed on the next run of the EventLoop.

The class/interface hierarchy of EventExecutor is shown in figure 15.2 (only shown in
one depth).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

241

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 15.2 EventLoop class hierarchy

This interface makes it possible to use the provided EventLoop (which is assigned to a
channel), as you�d typically use an ExecutorService to execute a task in one of the threads
it holds.

15.2.1 Using the event loop
The following listing shows how to access the EventLoop that�s assigned to a channel and use
it to execute a task in the EventLoop.

Listing 15.1 Execute task in EventLoop

Channel ch = ... #1
Future<?> future = ch.eventLoop().execute(new Runnable() { #2
 @Override
 public void run() {
System.out.println(“Run in the EventLoop”); #3
}
});

#1 Obtain reference to the channel
#2 Create runnable for the EventLoop accessed via channel and pass it to the EventLoop for execution.
The task is executed as soon as the EventLoop is run again.
#3 Run the actual code here

The benefit of executing the task in the event loop is that you don�t need to worry about any
synchronization. The runnable will get executed in the same thread as all other events that are
related to the channel. This fits exactly in the expected thread model of Netty.

To check if the task was executed yet, use the returned Future. This gives you access to
many different operations.

The following listing verifies whether the task executed.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

242

http://www.manning-sandbox.com/forum.jspa?forumID=857

Listing 15.2 Execute task in event loop and check completion
Channel channel = ...
Future<?>future = channel.eventLoop().submit(…);#1
if (future.isDone()) {
 System.out.println(“Task complete”); #2
} else {
 System.out.println(“Task not complete yet”); #3
}

#1 Obtain Future<?> returned by EventLoop
#2 At this point, task was executed
#3 At this point, task not executed, check later

To know whether a task will be executed directly, you may find it useful to check if you�re in
the EventLoop, as shown in the following listing. .

Listing 15.3 Execute task in EventLoop

Channel ch = ...
if (ch.eventLoop().inEventLoop()) { #1
System.out.println(“In the EventLoop”); #2
 ...
 ...
} else {
System.out.println(“Outside the EventLoop”); #3
 ...
 ...
}

#1 Check if calling thread is assigned to EventLoop
#2 At this point, you�re in the EventLoop
#3 At this point, thread isn�t assigned to EventLoop

Shut down the thread pool only if you�re sure that no other EventLoop is using it, or else you
may get undefined side effects.

15.2.2 I/O operations in Netty 4
As this implementation is so powerful, even Netty uses it under the hood to handle its I/O
events, which are triggered by read and write operations on the socket. These read and write
operations are part of the network API that�s provided by Java and the underlying operating
system.

Figure 15.3 shows how inbound and outbound operations are executed in the context of the
EventLoop. If the executing thread is bound to the EventLoop the operation will get
executed directly. If not, the thread will be queued and executed once the EventLoop is
ready.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

243

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 15.3 EventLoop handling of reads and writes

#1 Read from the socket, once data is received pass it to the EventLoop for further processing
#2 Handle writes to the socket. Once a write request is done, pass it to the EventLoop for further
processing
#3 After the event is passed to the EventLoop, a check is performed to detect if the calling thread is the
same as the one assigned to the EventLoop
#4 Thread is the same, so you�re in the EventLoop, which means the event can get handled directly
#5 Thread is not the same as the one that�s assigned to the EventLoop. Queue the event to get
executed once the EventLoop process its events again

What exactly needs to be done once an event is handled depends on the nature of the event.
Often it will read or transfer data from the network stack into your application. Other times it
will do the same in the other direction, for example, transferring data from your application
into the network stack (kernel) to send it over the remote peer. But it�s not limited to this type
of transaction; the important thing is that the logic used is generic and flexible enough to
handle all kinds of use cases.

It should be noted that the thread model (on top of the event loop) described was not
always used by Netty. In the next section you�ll learn about the one in Netty 3. This will make
it easier for you to understand why the new one is preferable.

15.2.3 I/O operations in Netty 3
In previous releases it was a bit different. Netty guaranteed only that inbound (previously
called upstream) events were executed in the I/O thread (kind of an event loop). All outbound
(previously called downstream) events were handled by calling the thread. This sounded like a
good idea at first but turned out to be error-prone. It also put the burden on you to
synchronize your ChannelHandlers that handle these events, as it wasn�t guaranteed that
only one thread operated on them at the same time. This could happen if you fired downstream
events at the same time for one channel, for example, call Channel.write(..) in different
threads. Figure 15.4 shows the execution flow of Netty 3.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

244

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 15.4 Execution-logic of Netty3

#1 The I/O thread that handles all the I/O events of a channel
#2 Data gets ready from the socket
#3 Gets processed in the worker, which is bound to the I/O thread
#4 The data / event is passed through all the ChannelHandlers of the Channel . This still happens within
the IO thread of the Channel.
#5 Any thread from which an outbound operation is triggered. This may be the IO / thread or any other
thread.
#6 Something is passed to the Channel.write(..)
#7 The write operation will generate an event that will get passed to the ChannelHandlers of the
channel
#8 The event gets passed through all the ChannelHandlers of the channel This happens in the same
thread as from which the write operation was triggerd.
#09 Once processing of the even via the ChannelHandlers is done, it will hand over the event to the
worker thread
#10 The data is finally written to the remote peer by the worker thread

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

245

http://www.manning-sandbox.com/forum.jspa?forumID=857

In addition to the burden placed on you to synchronize ChannelHandlers, another
problematic side effect of this thread model is that you may need to fire an inbound (upstream)
event as a result of an outbound (downstream) event. This is true, for example, if your
Channel.write(..) operation causes an exception. In that case, an exceptionCaught
must be generated and fired. This doesn�t sound like a problem at first glance, but knowing
that exceptionCaught is an inbound (upstream) event by design may give you an idea
where the problem is. The problem is, in fact, that you now have a situation where the code is
executed in your calling thread but the exceptionCaught event must be handed over to the
worker thread for execution. That�s generally doable, but if you forgot to hand it over, it will
result in an invalidation of the thread model, which may give you all sorts of race conditions as
the assumption about handing inbound (upstream) events only by one thread isn�t true
anymore.

The only positive effect of the previous implementation was that it could provide better
latency in certain cases, but again, it�s worth the cost as it removes complexity. In reality, in
most applications you won�t observe any difference in latency, which also depends on other
factors such as:

 How fast the bytes can be written to the remote peer

 How busy the actual I/O thread is

 Context switching

 Locking

You can see that many details affecting the overall latency.
Now that you know how you can execute tasks in the event loop, it�s time to have a quick

look at various Netty internals that use this feature.

15.2.4 Netty�s thread model internals
The trick that�s used inside Netty to make its thread model perform so well is that it checks to
see if the executing thread is the one that�s assigned to the actual channel (and EventLoop).
The EventLoop is responsible for handling all events for a Channel during its lifetime.

If the thread is the same as the one of the EventLoop, the code block in question is
executed. If the thread is different, it schedules a task and puts it in an internal queue for later
execution. It�s usually executed once the next event for the Channel is handled via the
EventLoop. This allows you to directly interact with the channel from any thread, while still
being sure that all ChannelHandlers don�t need to worry about concurrent access.

Figure 15.5 shows the execution logic that�s used in the EventLoop to schedule tasks to fit
Netty�s thread model.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

246

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 15.5 EventLoop execution logic / flow

#1 The task that should be executed in the EventLoop
#2 After the task is passed to the execute methods, a check is performed to detect if the calling thread
is the same as the one that�s assigned to the EventLoop
#3 The thread is the same, so you�re in the EventLoop, which means the task can get executed directly
#4The thread is not the same as the one that�s assigned to the EventLoop. Queue the task to get
executed once the EventLoop processes its events again

That said, because of the design it�s important to ensure that you never put any long-running
tasks in the execution queue, because once the task is executed and run it will effectively block
any other task from executing on the same thread. How much this affects the overall system
depends on the implementation of the EventLoop that�s used in the specific transport
implementation.

As switching between transports is possible without any changes in your code base, it�s
important to remember that the Golden Rule always applies here: Never block the I/O thread.
If you must do blocking calls (or execute tasks that can take long periods to complete), use a
dedicated EventExecutor. More on this topic can be found in Chapter 6.

The next section will show one more feature that�s often needed in applications. This is the
need to schedule tasks for later execution or for periodic execution. Java has out-of-the-box
solutions for this job, but Netty provides you with several advanced implementations that you�ll
learn about next.

15.3 Scheduling tasks for later execution
Every once in a while, you need to schedule a task for later execution. Maybe you want to
register a task that gets fired after a client is connected for five minutes. A common use case is
to send an �Are you alive?� message to the remote peer to see if it�s still there. If it fails to
respond, you know it�s not connected anymore, and you can close the channel (connection)
and release the resources.

Pretend you�re on a phone call with your friend and after a period of silence you ask your
friend if he�s still on the call (to see if the line is broken). If he fails to respond to you, you
know that either the call was interrupted, or he fell asleep. Whatever it is, you can quit the call,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

247

http://www.manning-sandbox.com/forum.jspa?forumID=857

too, because there�s nothing for you to wait for. When you hung up, you released your
resources and you�re able to do something else.

The next section will show how you can schedule tasks for later execution in Netty using its
powerful EventLoop implementation. It also gives you a quick introduction to task scheduling
with the core Java API to make it easier for you to compare the built API with the one that
comes with Netty. In addition to these items, you�ll get more details about the internals of
Netty�s implementation and understand what advantages and what limitations it provides.

15.3.1 Scheduling tasks with plain Java API
To schedule a task you typically use the provided ScheduledExecutorService
implementations that ship with the JDK. This wasn�t always true. Before Java 5 you used a
timer, which has the exact same limitations as normal threads.

Table 15.1 shows the utility methods that you can use to create an instance of
ScheduledExecutorService.

Table 15.1 java.util.concurrent.Executors�Static methods to create a ScheduledExecutorService

Methods Description
newScheduledThreadPool(int corePoolSize)

Creates a new
ScheduledThreadExecutorS
ervice that can schedule
commands to run after a delay or
to execute periodically. It will use
corePoolSize to calculate the
number of threads.

newScheduledThreadPool(int corePoolSize,
ThreadFactorythreadFactory)

newSingleThreadScheduledExecutor()
Creates a new
ScheduledThreadExecutorS
ervice that can schedule
commands to run after a delay or
to execute periodically. It will use
one thread to execute the
scheduled tasks.

newSingleThreadScheduledExecutor(ThreadFactorythr
eadFactory)

After looking at the table 15.1 you�ll notice that not many choices exist, but these are enough
for most use cases. Now see how ScheduledExecutorService is used in listing 15.4 to
schedule a task to run after a 60-second delay.

Listing 15.4 Schedule task with a ScheduledExecutorService

ScheduledExecutorService executor = Executors
.newScheduledThreadPool(10); #1

ScheduledFuture<?> future = executor.schedule(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

248

http://www.manning-sandbox.com/forum.jspa?forumID=857

new Runnable() { #2
 @Override
public void run() {
System.out.println(“Now it is 60 seconds later”); #3
 }
}, 60, TimeUnit.SECONDS); #4
...
...
executor.shutdown(); #5

#1 Create a new ScheduledExecutorService which uses 10 threads
#2 Create a new runnable to schedule for later execution
#3 This will run later
#4 Schedule task to run 60 seconds from now
#5 Shut down ScheduledExecutorService to release resources once task complete

As you can see, using ScheduledExecutorService is straightforward.
Now that you know how to use the classes of the JDK, you�ll learn how you can use Netty�s

API to do the same, but in a more efficient way.

15.3.2 Scheduling tasks using EventLoop
Using the provided ScheduledExecutorService implementation may have worked well for
you in the past, but it comes with limitations, such as the fact that tasks will be executed in an
extra thread. This boils down to heavy resource usage if you schedule many tasks in an
aggressive manner. This heavy resource usage isn�t acceptable for a high-performance
networking framework like Netty. What do you do if you must schedule tasks for later
execution but still need to scale? Fortunately everything you need is already provided for free
and part of the core API.

Netty solves this by allowing you to schedule tasks using the EventLoop that�s assigned to
the channel, as shown in listing 15.5.

Listing 15.5 Schedule task with EventLoop

Channel ch = ...
ScheduledFuture<?> future = ch.eventLoop().schedule(
new Runnable() { #1
 @Override
public void run() {
System.out.println(“Now its 60 seconds later”); #2
}
}, 60, TimeUnit.SECONDS); #3

#1 Create a new runnable to schedule for later execution
#2 This will run later
#3 Schedule task to run 60 seconds from now

After the 60 seconds passes, it will get executed by the EventLoop that�s assigned to the
channel.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

249

http://www.manning-sandbox.com/forum.jspa?forumID=857

As you learned earlier in the chapter, EventLoop extends ScheduledExecutorService
and provides you with all the same methods that you learned to love in the past when using
executors.

You can do other things like schedule a task that gets executed every X seconds. To
schedule a task that will run every 60 seconds, use the code shown in listing 15.6.

Listing 15.6 Schedule a fixed task with the EventLoop

Channel ch = ...
ScheduledFuture<?> future = ch.eventLoop()
.scheduleAtFixedRate(new Runnable() { #1
 @Override
public void run() {
System.out.println(“Run every 60 seconds”); #2
 }
}, 60, 60, TimeUnit.Seconds);#3

#1 Create new runnable to schedule for later execution
#2 This will run until the ScheduledFuture is canceled
#3 Schedule in 60 seconds and every 60 seconds

To cancel the execution, use the returned ScheduledFuture that�s returned for every
asynchronous operation. The ScheduledFuture provides a method for canceling a scheduled
task or to check the state of it.

One simple cancel operation would look like the following example.

ScheduledFuture<?> future = ch.eventLoop()
.scheduleAtFixedRate(..); #1
// Some other code that runs...
future.cancel(false); #2

#1 Schedule task and obtain the returned ScheduledFuture
#2 Cancel the task, which prevents it from running again

The complete list of all the operations can be found in the ScheduledExecutorService
javadocs.

Now that you know what you can do with it, you may start to wonder how the
implementation of the ScheduledExecutorService is different in Netty, and why it scales
so well compared to other implementations of it.

15.3.3 Scheduling implementation internals
The actual implementation in Netty is based on the paper �Hashed and hierarchical timing
wheels: Data structures to efficiently implement timer facility� by George Varghese. This kind
of implementation only guarantees an approximated execution, which means that the
execution of the task may not be 100% exactly on time. This has proven to be a tolerable
limitation in practice and does not affect most applications at all. It�s just something to
remember if you need to schedule tasks, because it may not be the perfect fit if you need
100% exact, on-time execution.

To better understand how this works, think of it this way:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

250

http://www.manning-sandbox.com/forum.jspa?forumID=857

1. You schedule a task with a given delay.

2. The task gets inserted into the Schedule-Task-Queue of the EventLoop.

3. The EventLoop checks on every run if tasks need to get executed now.

4. If there�s a task, it will execute it right away and remove it from the queue.

5. It waits again for the next run and starts over again with step 4.

Because of this implementation the scheduled execution may be not 100 % acurate. Which
means it may not be 100 % exact, this is fine for most use-cases given that it allows for almost
no overhead within Netty.

But what if you need more accurate execution? It�s easy. You�ll need to use another
implementation of ScheduledExecutorService that�s not part of Netty. Just remember that
if you don�t follow Netty�s thread model protocol, you�ll need to synchronize the concurrent
access on your own. Do this only if you must.

15.4 I/O thread allocation in detail
Now that you know how to execute a task in the EventLoop or schedule a task for later
execution, it�s time to get into more detail about how Netty allocates threads.

Netty uses a thread pool to hold threads that will serve the I/O and events for a Channel.
The way threads are allocated varies upon the transport implementation. An asynchronous
implementation uses only a few threads that are shared between the channels. This allows a
minimal number of threads to serve many channels (which maps 1:1 to a connection),
eliminating the need to have one dedicated thread for each of them.

Figure 15.6 shows how the thread pool is allocated.

Figure 15.6 Thread allocation for nonblocking transports (such as NIO and AIO)

#1 All threads get allocated out of this thread pool. Here it will use three threads

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

251

http://www.manning-sandbox.com/forum.jspa?forumID=857

#2 Thread allocated out of the thread pool. This thread handles all events and tasks for all the channels
assigned to it, via the EventLoop
#3 Channels that are bound to the thread and so all operations are always executed by the same thread
during the life-time of the Channel. A channel belongs to a connection

As you can see, figure 15.6 uses a thread pool with a fixed size of three threads. The threads
are allocated directly once the thread pool is created. This is done to make sure resources are
available when needed.

These three threads will get assigned to each newly created channel, which is created per
connection. This is done through the EventLoopGroup implementation, which uses the thread
pool under the hood to manage the resources. The actual implementation will take care of
distributing the created channels evenly on all threads. This distribution is done in a round-
robin fashion, so it may not be 100% accurate, but most of the time it is.

Once a Channel is assigned to a thread it will use this thread throughout its lifetime. This
characteristic may change in future releases, so it may not be something that you should
depend on. What won�t change is the fact that only one thread will operate on the I/O of a
specific channel at the same time. You can, and should, depend on this, as it makes sure that
you don�t need to worry at all about synchronization.

The semantic is a bit different for other transports, such as the shipped OIO (Old Blocking
I/O) transport, as you can see in figure 15.7.

Figure 15.7 Thread allocation of blocking transports (such as OIO)

#1 All threads get allocated out of this thread pool
#2 Thread allocated for the channel will execute all events and task from EventLoop
#3 Channel bound to the thread. A channel belongs to a connection

As you may notice here, one thread is created per channel. You may be used to this from
developing a network application that�s based on regular blocking I/O when using classes out of
the java.io.* package. But even if the semantics change in this case, one thing still stays the
same. Each channel�s I/O will only be handled by one thread at one time, which is the one

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

252

http://www.manning-sandbox.com/forum.jspa?forumID=857

thread that powers the EventLoop of the Channel. You can depend on this hard rule; it�s what
makes writing code via the Netty framework so easy compared to other user network
frameworks out there.

15.5 Summary
In this chapter you learned which thread model Netty uses. You learned the pros and cons of
using thread models and how they simplify your life when working with Netty.

In addition to the inner workings, you also gained insight on how you can execute your own
tasks in the event loop (I/O thread) the same way that Netty does. You learned how to
schedule tasks for later execution and how this feature is implemented to scale even if you
schedule a large number of tasks. You also learned how to verify whether a task has executed
and how to cancel it.

You now know what thread model previous versions of Netty used, and you got more
background information about why the new thread model is more powerful than the old one it
replaced.

All of this should give you a deeper understanding of Netty�s thread model, thereby helping
you maximize your application�s performance while minimizing the code needed. For more
information about thread pools and concurrent access, please refer to the book Java
Concurrency in Practice by Brian Goetz. His book will give you a deeper understanding of even
the most complex applications that have to handle multithreaded use case scenarios.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

253

http://www.manning-sandbox.com/forum.jspa?forumID=857

16
De-register / Re-register with the

EventLoop

In this chapter we�ll take a look at

 EventLoop

 Register and Deregistering from an EventLoop

 Using old Socket and Channels with Netty

In the last chapter you learned about Netty�s thread model and how this is implemented in the
EventLoop of the specific Transports.

Netty provides an easy way to also attach Socket / Channels which were created
outside of Netty and so �transfer� their responsibility to Netty. This allows you to integrate
legacy frameworks in a seamless way and so make it easy to migrate to Netty step by step.
Likewise Netty also allows you to deregister a Channel which will stop processing IO from it.
This helps if you want to �suspend� and free up resources.

All of those are more advanced features, which you may never need, but never less it may
become quite useful for you at some point. After this chapter you will be able to make use of
those advanced features and so solve some harder problems.

As an example, imagine the case where you work with a popular social network and your
application is growing amongst users. The current system handles a few thousand
interactions/messages per second but if your growth continues the system will be processing
tens of thousands of interactions per second.

This is exciting but the current system is inefficient, uses a lot of resources (memory and
CPU), and management is convinced they can be saving some money whilst improving the
service.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

254

http://www.manning-sandbox.com/forum.jspa?forumID=857

In cases like this, you cannot afford down time. The system must remain functional and
processing the ever growing amount of data. This is a perfect use case for when
registering/deregistering with an event loop becomes useful.

By allowing external sockets/channels to be registered and deregistered, Netty makes it
possible for the old system to be plugged in such a way that all of Netty�s benefits can become
part of the existing system through an effective and delicate integration. The rest of this
chapter will show you how integration can be achieved.

16.1 Registering and Deregistering Channels and Sockets
As explained in previous chapters each Channel needs to be registered on an EventLoop to
process its IO / Events. This is done for you during the bootstrap process automatically.

Figure 16.1 shows the relationship.

Figure 16.1 Bootstrap hierarchy

#1 A Channel which represent a connection with another peer
#2 A Channel which represent a connection with another peer
#3 The EventLoop which handles all the IO / Events for both Channels

But that�s only one �half� of it. Once the Channel is closed it will also deregistered from its
EventLoop again to free up resources.

As stated before sometimes you have to deal with
java.nio.channels.SocketChannel or some other java.nio.channels.Channel
implementation. This may be because you have some legacy app or framework that you need
to use or any other reason.

The good news is that even with this you can make use of Netty as Netty allows to make
use of pre-created java.nio.channels.Channel by wrapping them and then allows you to
register on an EventLoop.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

255

http://www.manning-sandbox.com/forum.jspa?forumID=857

This allows you to make use of all Netty features while still re-using your existing stuff.
Fortunately it�s quite easy. Listing 16.1 shows how you can make use of this feature.

Listing 16.1 Register pre-created java.nio.channels.SocketChannel

java.nio.channels.SocketChannel mySocket =
java.nio.channels.SocketChannel.open(); #1

// Perform some operations on the java.nio SocketChannel
... #2

SocketChannel ch = new NioSocketChannel(mySocket); #3
EventLoopGroup group = ...;
ChannelFuture registerFuture = group.register(ch); #4
...

// Deregister from EventLoop again.
ChannelFuture deregisterFuture = ch.deregister(); #5

#1 Create a java.nio.channels.SocketChannel via some legacy code
#2 Operate on the previous created java.nio.channels.SocketChannel
#3 Create a new NettySocketChannel by wrap the java.nio.channels.SocketChannel
#4 Register it with an EventLoop. After this Netty takes over and handle the IO events
#5 Deregister the SocketChannel from the EventLoop again. Netty does not handle any IO events for it
anymore

This is all you need.
But the feature is not limited to java.nio.channels.Channel implementations. It also

works for pre-created Sockets! The usage is quite the same; the only difference is that you
would wrap the Socket into an OioSocketChannel. This is not surprising as the
OioSocketChannel works in a blocking manner, which is the same as what Socket does.

To make it let stick have a look at Listing 16.2.

Listing 16.2 Register pre-created java.net.Socket

Socket mySocket = new Socket("www.manning.com", 80); #1

// Perform some operations on the Socket
... #2

SocketChannel ch = new OioSocketChannel(mySocket); #3
EventLoopGroup group = ...;
ChannelFuture registerFuture = group.register(ch); #4
...

// Deregister from EventLoop again.
ChannelFuture deregisterFuture = ch.deregister(); #5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

256

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

#1 Create a Socket , which is connected to the remote host via some legacy code
#2 Operate on the previous created Socket
#3 Create a new NettySocketChannel by wrap the java.nio.channels.SocketChannel
#4 Register it with an EventLoop. After this Netty takes over and handle the IO events
#5 Deregister the SocketChannel from the EventLoop again. Netty does not handle any IO events for it
anymore

There are only two things to remember which are quite important.
1. If you use a pre-created Channel / Socket you will need to take care that no one else

other than Netty operates on it once you register it. Otherwise you may see races or
other problems.

2. The EventLoop.register(…) and Channel.deregister(…) operations are non-
blocking a.k.a asynchronous, which means they may complete later. Because of this
they return a ChannelFuture. So if you need to be sure the operation is done
before do any further action make sure you either add a ChannelFutureListener or
sync/ wait on the ChannelFuture to complete. Which one you use depends if you
want / can block the calling thread or not but in general a channel future listener is
recommend and blocking should be avoid unless absolutely necessary.

In this section you learned how you can make use of Netty�s flexible EventLoop and register /
deregister pre-created Channels on the fly. But there are also situations where you want to
make use of this feature with Netty�s own Channels.

Having the ability to deregister a Channel from its EventLoop provides you with some
powerful and flexible way of dealing with Channels and their events. But what could it be
helpful with or in fact, what is a valid use case for this?

There are a few of them but we will just focus on the two most needed to keep it simple
and short.

16.2 Suspend IO Processing
There may be situations where you want to stop processing any events for a given Channel.
This may be for various reasons; For example, it may be more crucial to keep an application
from running out of memory and crashing than it is to lose a few messages. In a situation like
this you would stop processing events for a channel, perform some cleanup operation and once
the system is stabilized again, re-register the channel to continue processing messages.

The best way for doing so is to just deregister the Channel from its EventLoop. This will
effectively stop any of event processing for the Channel.

Once you feel it is time to start processing again you can just re-register the Channel
again on the EventLoop and everything will just continue. This means it will again read data
from the socket and write data to it if needed. Beside this you will also be able to submit new
tasks to execute for its EventLoop.

Figure 16.2 shows the use-case.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

257

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 16.2 Deregister and reregister with an EventLoop

#1 A Channel which represent a connection with another peer
#2 Deregister the Channel from its EventLoop. After this is done no futher IO / Events are processed for
the Channel
#3 Reregister the Channel with its previous EventLoop and so let the IO / Event processing start again.

Let us see it in action in Listing 16.3. In this example we will remove the Channel from its
EventLoop as soon as the first data is received.

Listing 16.3 Register pre-created java.net.Socket

EventLoopGroup group = new NioEventLoopGroup(); #1
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(group).channel(NioSocketChannel.class) #2
 .handler(new SimpleChannelInboundHandler<ByteBuf>() {
 @Override
 protected void channelRead0(ChannelHandlerContext ctx,
 ByteBuf byteBuf) throws Exception {
 ctx.pipeline().remove(this);
 ctx.deregister(); #3
 }
});
ChannelFuture future = bootstrap.connect(
new InetSocketAddress("www.manning.com", 80)).sync();

// Do something which takes some amount of time
...

// Register channel again on eventloop

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

258

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

Channel channel = future.channel();
group.register(channel).addListener(new ChannelFutureListener() { #4
 @Override
 public void operationComplete(ChannelFuture future) throws Exception {
 if (future.isSuccess()) {
 System.out.println("Channel registered");
 } else {
 System.err.println("Register Channel on EventLoop failed");
 future.cause().printStackTrace();
 }
 }
});

#1 Createa new NioEventLoopGroup on which the Channel will be registered during the boostrap
process
#2 Specify the EventLoopGroup to use
#3 Deregister the Channel from its EventLoop once data is received
#4 Register the Channel again on the EventLoop and so start to process IO / Events for it again

So what exactly happened in Listing 16.3? It�s quite easy. First off we created the Bootstrap
as usual and configured it with all needed parameters. If something is unclear here you may
want to revisit Chapter 9, which gives a deep dive into bootstrapping. Now to the interesting
part�

In our SimpleChannelInboundHandler which was given to the
Bootstrap.handler(…) method we defined that it first remove itself from the
ChannelPipeline(so it�s a one �shot�). After the removal action was complete it calls
Channel.deregister() which will deregister the Channel from its EventLoop. Once the
Channel was removed from the EventLoop no more IO / Events are processed from it. This in
fact means we�ve kind of suspended it. That is exactly what we wanted to do; suspend it to
free up resources.

Now after some time has elapsed we want to �resume� the Channel and so it�s IO/Event
processing. For this the Channel is registered on the EventLoopGroup again. This is done
via EventLoopGroup.register(…) in an asynchronous fashion. Once the operation
completes the Channel is �in action� again.

16.3 Migrate a channel to another event loop
Another use case for deregister and register a Channel on the fly is to move an active
Channel to another EventLoop.

There are many reasons why you may want to do this.
 The EventLoop may be to �busy� and you want to transfer the Channel to a �less-

busy� one
 You want to terminate a EventLoop because you want to free up resources (in most

cases that would be running Threads) while still keep the active Channels alive
 Migrate the Channel to a EventLoop which has �lower� execution priority based on

some rules for �non-business-critical� data
Figure 16.3 shows the migration of the Channel to another EventLoop.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

259

http://www.manning-sandbox.com/forum.jspa?forumID=857

Figure 16.3 Migrate a Channel from one EventLoop to another

#1 A Channel which represent a connection with another peer
#2 Deregister the Channel from its EventLoop. After this is done no further IO / Events are processed
for the Channel
#3 Register the Channel with another EventLoop and so let the IO / Event processing start again.

So let us see it again in action.

Listing 16.4 Register pre-created java.net.Socket

EventLoopGroup group = new NioEventLoopGroup(); #1
final EventLoopGroup group2 = new NioEventLoopGroup(); #2

Bootstrap bootstrap = new Bootstrap();
bootstrap.group(group).channel(NioSocketChannel.class) #3
 .handler(new SimpleChannelInboundHandler<ByteBuf>() {

 @Override
 protected void channelRead0(ChannelHandlerContext ctx,
 ByteBuf byteBuf) throws Exception {
 ctx.pipeline().remove(this);

 ChannelFuture cf = ctx.deregister(); #4
 cf.addListener(new ChannelFutureListener() {

 @Override
 public void operationComplete(ChannelFuture future)
 throws Exception {
 group2.register(future.channel()); #5
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

260

http://www.manning-sandbox.com/forum.jspa?forumID=857

 });
 }
 });

ChannelFuture future = bootstrap.connect(
new InetSocketAddress("www.manning.com", 80));
future.addListener(new ChannelFutureListener() {

 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Connection established");
 } else {
 System.err.println("Connection attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
});

#1 Create a new NioEventLoopGroup on which the Channel will be registered during the bootstrap
process
#2 Create another NioEventLoopGroup to which we want to migrate the Channel as soon as some data
was received
#3Specify the EventLoopGroup to use
#4Deregister the Channel from its EventLoop once data is received
#5 Register the Channel to the other EventLoopGroup once the deregister completes and so start to
process IO / Events for it again

As you saw migrating a Channel from one EventLoop to another is straightforward. The only
thing you need to remember is that the deregister(…) and register(…) operations are
asynchronous and so you need to operate with the ChannelFuture and
ChannelFutureListener to make sure you do not try to register the Channel while it is still
registered. If you try to do so you will trigger an IllegalStateException as a Channel
can only be registered to one EventLoop at the same time.

16.4 Summary
This Chapter showed you how you can deregister and reregister a Channel with an
EventLoop. This allows you to either �suspend� a Channel or migrate it to another
EventLoop for any reason. Having the ability to register and deregister both pre-created and
Netty channels makes many ad-hoc features a reality. It can be very useful for stabilizing a
system and keeping it online by ignoring data/messages until some cleanup operation has been
performed. Even more so, it can be very convenient for allowing you to progressively integrate
legacy systems to start taking advantage of advanced Netty features with minimal risks to the
old system.

In the next Chapter we will go much deeper in the Netty API and show you how you can
implement your custom transport on top of Netty. This will allow you to reuse all the provided
ChannelHandler that come with Netty but operate on your own transport implementation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

261

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=857

This will be the most advanced chapter and will teach you everything needed to become a
real Netty expert.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=857

262

http://www.manning-sandbox.com/forum.jspa?forumID=857

	Netty in Action MEAP v05
	Copyright
	Table of content
	Chapter 1: Netty and Java NIO APIs
	1.1 Why Netty?
	1.1.1 Not all networking frameworks are alike
	1.1.2 Netty boasts a rich feature set

	1.2 Asynchronous by design
	1.2.1 Callbacks

	1.3 Blocking versus non-blocking IO on the JVM
	1.3.1 EchoServer based on blocking IO
	1.3.2 Non-blocking IO basics
	1.3.3 EchoServer based on NIO
	1.3.4 EchoServer based on NIO.2

	1.4 NIO problems and how Netty comes to the rescue
	1.4.1 Cross-platform and compatibility issues
	1.4.2 Extending ByteBuffer ... or not
	1.4.3 Scattering and gathering may leak
	1.4.4 Squashing the famous epoll bug

	1.5 Summary

	Chapter 2: Your first Netty application
	2.1 Setting up the development environment
	2.2 Netty client and server overview
	2.3 Writing an Echo server
	2.3.1 Bootstrapping the server
	2.3.2 Implementing the server/business logic
	2.3.3 Intercepting exceptions

	2.4 Writing an echo client
	2.4.1 Bootstrapping the client
	2.4.2 Implementing the client logic

	2.5 Compiling and running the echo client and server
	2.5.1 Compiling the server and client
	2.5.2 Running the server and client

	2.6 Summary

	Chapter 3: Netty from the ground up
	3.1 Netty Crash Course
	3.2 Channels, Events and Input/Output (IO)
	3.3 Bootstrapping: What and Why
	3.4 Channel Handlers and Data Flow
	3.4.1 Piecing it together, ChannelPipeline and handlers

	3.5 Encoders, Decoders and Domain Logic: A Closer Look at Handlers
	3.6 Summary

	Chapter 4: Transports
	4.3 Included transports
	4.3.1 NIO – Nonblocking I/O
	4.3.2 OIO – Old blocking I/O
	4.3.3 Local – In VM transport
	4.3.4 Embedded transport

	4.4 When to use each type of transport
	4.5 Summary

	Chapter 5: Buffers
	5.1 Buffer API
	5.2 ByteBuf—The byte data container
	5.2.1 How it works
	5.2.2 Different types of ByteBuf

	5.3 ByteBuf's byte operations
	5.3.1 Random access indexing
	5.3.2 Sequential access indexing
	5.3.3 Discardable bytes
	5.3.4 Readable bytes (the actual content)
	5.3.5 Writable bytes
	5.3.6 Clearing the buffer indexes
	5.3.7 Search operations
	5.3.8 Mark and reset
	5.3.9 Derived buffers
	5.3.10 Read/write operations
	5.3.11 Other useful operations

	5.4 ByteBufHolder
	5.4.1 Netty's buffer utility classes
	5.4.2 ByteBufAllocator—Allocate ByteBuf when needed
	5.4.3 Unpooled—Buffer creation made easy
	5.4.4 ByteBufUtil—Small but useful

	5.5 Summary

	Chapter 6: ChannelHandler
	6.1 ChannelPipeline
	6.2 ChannelHandlerContext
	6.2.1 Notify the next ChannelHandler

	6.3 The state model
	6.4 ChannelHandlers and their types
	6.4.1 ChannelHandler—the parent of all
	6.4.2 Inbound handlers
	6.4.3 Outbound handlers

	Chapter 7: Codec
	7.1 Codec
	7.2 Decoders
	7.2.1 ByteToMessageDecoder
	7.2.2 ReplayingDecoder
	7.2.3 MessageToMessageDecoder—Decode POJOs on the fly
	7.2.4 Decoders summary

	7.3 Encoders
	7.3.1 MessageToByteEncoder
	7.3.2 MessageToMessageEncoder

	7.4 Codec
	7.4.1 ByteToByteCodec—Decoding and Encoding of bytes
	7.4.2 ByteToMessageCodec—Decoding and encoding messages and bytes
	7.4.3 MessageToMessageCodec—Decoding and encoding messages

	7.5 Other ways to compose
	7.5.1 CombinedChannelDuplexHandler—Combine your handlers

	7.6 Summary

	Chapter 8: Provided ChannelHandlers and codecs
	8.1 Securing Netty applications with SSL/TLS
	8.2 Building Netty HTTP/HTTPS applications
	8.2.1 Netty's HTTP decoder, encoder, and codec
	8.2.2 HTTP message aggregation
	8.2.3 HTTP compression
	8.2.4 Using HTTPS
	8.2.5 Using WebSockets
	8.2.6 SPDY

	8.3 Handling idle connections and timeouts
	8.4 Decoding delimiter- and length-based protocols
	8.4.1 Delimiter-based protocols
	8.4.2 Length-based protocols

	8.5 Writing big data
	8.6 Serializing data
	8.6.1 Serialization via plain JDK
	8.6.2 Serialization via JBoss Marshalling
	8.6.3 Serialization via ProtoBuf

	8.7 Summary

	Chapter 9: Bootstrapping Netty applications
	9.1 Different types of bootstrapping
	9.2 Bootstrapping clients and connectionless protocols
	9.2.1 Methods for bootstrapping clients
	9.2.2 How to bootstrap a client
	9.2.3 Choosing compatible channel implementations

	9.3 Bootstrapping Netty servers with ServerBootstrap
	9.3.1 Methods for bootstrapping servers
	9.3.2 How to bootstrap a server

	9.4 Bootstrapping clients from within a channel
	9.5 Adding multiple ChannelHandlers during a bootstrap
	9.6 Using Netty ChannelOptions and attributes
	9.7 Summary

	Chapter 10: Unit-test your code
	10.1 General
	10.2 Testing ChannelHandler
	10.2.1 Testing inbound handling of messages
	10.2.2 Testing outbound handling of messages

	10.3 Testing exception handling
	10.4 Summary

	Chapter 11: WebSockets
	11.1 WebSockets some background
	11.2 The Challenge
	11.3 Implementation
	11.3.1 Handle http requests
	11.3.2 Handle websocket frames
	11.3.3 Initialize the ChannelPipeline

	11.4 Wire things together
	11.5 We need encryption, now!
	11.6 Summary

	Chapter 12: SPDY
	12.1 SPDY some background
	12.2 The Challenge
	12.3 Implementation
	12.3.1 Integration with Next Protocol Negotiation
	12.3.2 Implementation of the various ChannelHandlers
	12.3.3 Setuping the ChannelPipeline
	12.3.4 Wiring things together

	12.4 Start the SpdyServer and test it
	12.5 Summary

	Chapter 13: Broadcasting events via UDP
	13.1 Handle UDP
	13.2 UDP Application structure & Design
	13.3 EventLog POJOs
	13.4 Writing the “Broadcaster”
	13.5 Writing the “monitor”
	13.6 Using the LogEventBroadcaster and LogEventMonitor
	13.7 Summary

	Chapter 14: Implement a custom codec
	14.1 Scope of the codec
	14.2 Implementing The Memcached codec
	14.3 Getting to Know the Memcached Binary Protocol
	14.4 Netty Encoders and DEcoders
	14.4.1 Implementing the Memcached Encoder
	14.4.2 Implementing the Memcached Decoder

	14.5 Testing the codec
	14.6 Summary

	Chapter 15: Choosing the right thread model
	15.1 Thread model overview
	15.2 The event loop
	15.2.1 Using the event loop
	15.2.2 I/O operations in Netty 4
	15.2.3 I/O operations in Netty 3
	15.2.4 Netty’s thread model internals

	15.3 Scheduling tasks for later execution
	15.3.1 Scheduling tasks with plain Java API
	15.3.2 Scheduling tasks using EventLoop
	15.3.3 Scheduling implementation internals

	15.4 I/O thread allocation in detail
	15.5 Summary

	Chapter 16: De-register / Re-register with the EventLoop
	16.1 Registering and Deregistering Channels and Sockets
	16.2 Suspend IO Processing
	16.3 Migrate a channel to another event loop
	16.4 Summary

