

LLVM Cookbook

Table of Contents

LLVM Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. LLVM Design and Use
Introduction
Understanding modular design

Getting ready
How to do it...
How it works...
There's more...
See also

Cross-compiling Clang/LLVM
Getting ready
How to do it...
How it works...

Converting a C source code to LLVM assembly

Getting ready
How to do it...
How it works...
See also

Converting IR to LLVM bitcode
Getting Ready
How to do it...
How it works...
There's more...
See also

Converting LLVM bitcode to target machine assembly
Getting ready
How to do it...
How it works...
There's more...

Converting LLVM bitcode back to LLVM assembly
Getting ready
How to do it...
How it works...

Transforming LLVM IR
Getting ready
How to do it...
How it works...
There's more...

Linking LLVM bitcode
Getting ready
How to do it...
How it works...

Executing LLVM bitcode
Getting ready
How to do it...
How it works...
See also

Using the C frontend Clang
Getting ready
How to do it…
How it works...
See also

Using the GO frontend
Getting ready
How to do it…
How it works…
See also

Using DragonEgg
Getting ready
How to do It…
See also

2. Steps in Writing a Frontend
Introduction
Defining a TOY language

How to do it…
Implementing a lexer

Getting ready
How to do it…
How it works…
See also

Defining Abstract Syntax Tree
Getting ready
How to do it…
How it works…
See also

Implementing a parser
Getting ready
How to do it…
How it works…
See also

Parsing simple expressions
Getting ready
How to do it…
How it works…

Parsing binary expressions
Getting ready
How to do it…
See also

Invoking a driver for parsing
How to do it…
How it works…
See also

Running lexer and parser on our TOY language
Getting ready
How to do it…
How it works…
See also

Defining IR code generation methods for each AST class
Getting ready
How to do it…

How it works…
Generating IR code for expressions

How to do it…
See also

Generating IR code for functions
How to do it…
How it works…
See also

Adding IR optimization support
How to do it…
See also

3. Extending the Frontend and Adding JIT Support
Introduction
Handling decision making paradigms – if/then/else constructs

Getting ready
How to do it...
How it works…
See also

Generating code for loops
Getting ready
How to do it...
How it works...
See also

Handling user-defined operators – binary operators
Getting ready
How to do it...
How it works...
See also

Handling user-defined operators – unary operators
Getting ready
How to do it...
How it works...
See also

Adding JIT support
How to do it...
How it works…

4. Preparing Optimizations
Introduction
Various levels of optimization

Getting ready...
How to do it…
How it works…
See Also

Writing your own LLVM pass
Getting ready
How to do it…
How it works
See also

Running your own pass with the opt tool
How to do it…
How it works…
See also

Using another pass in a new pass
Getting ready
How to do it…
How it works…
There's more…

Registering a pass with pass manager
Getting ready
How to do it…
How it works…
See Also

Writing an analysis pass
Getting ready
How to do it…
How it works…

Writing an alias analysis pass
Getting ready
How to do it...
How it works…
See also

Using other analysis passes
Getting ready…
How to do it…
How it works…
See also

5. Implementing Optimizations
Introduction
Writing a dead code elimination pass

Getting ready
How to do it…
How it works…
See also

Writing an inlining transformation pass
Getting ready
How to do it…

How it works...
Writing a pass for memory optimization

Getting ready
How to do it…
How it works…
See also

Combining LLVM IR
Getting started
How to do it…
How it works…
See also

Transforming and optimizing loops
Getting ready
How to do it…
How it works…

Reassociating expressions
Getting Ready
How to do it…
How it works …

Vectorizing IR
Getting ready
How to do it...
How it works…
See also…

Other optimization passes
Getting ready…
How to do it…
How it works…
See also

6. Target-independent Code Generator
Introduction
The life of an LLVM IR instruction

C Code to LLVM IR
IR optimization
LLVM IR to SelectionDAG
SelectionDAG legalization
Conversion from target-independent DAG to machine DAG
Scheduling instructions
Register allocation
Code emission

Visualizing LLVM IR CFG using GraphViz
Getting ready
How to do it…

See also
Describing targets using TableGen

Getting ready
How to do it
How it works
See also

Defining an instruction set
Getting ready
How to do it…
How it works…
See also

Adding a machine code descriptor
How it's done…
How it works…

Implementing the MachineInstrBuilder class
How to do it…
How it works…

Implementing the MachineBasicBlock class
How to do it…
How it works…
See also

Implementing the MachineFunction class
How to do it…
How it works…
See also

Writing an instruction selector
How to do it…
How it works…

Legalizing SelectionDAG
How to do it…
How it works…

Optimizing SelectionDAG
How to do it…
How it works…
See also

Selecting instruction from the DAG
How to do it…
How it works…
See also

Scheduling instructions in SelectionDAG
How to do it…
How it works…
See also

7. Optimizing the Machine Code
Introduction
Eliminating common subexpression from machine code

How to do it…
How it works…
See more

Analyzing live intervals
Getting ready
How to do it…
How it works…
See also

Allocating registers
Getting ready
How to do it…
How it works…
See also

Inserting the prologue-epilogue code
How to do it…
How it works…

Code emission
How to do it…

Tail call optimization
Getting ready
How to do it…
How it works…

Sibling call optimisation
Getting ready
How to do it…
How it works…

8. Writing an LLVM Backend
Introduction

A sample backend
Defining registers and registers sets

Getting ready
How to do it…
How it works…
See also

Defining the calling convention
How to do it…
How it works…
See also

Defining the instruction set
How to do it…

How it works…
See also

Implementing frame lowering
Getting ready
How to do it…
How it works…
See also

Printing an instruction
Getting ready
How to do it…
How it works…

Selecting an instruction
Getting ready
How to do it…
How it works…
See also

Adding instruction encoding
How to do it…
How it works…
See also

Supporting a subtarget
How to do it…
See also

Lowering to multiple instructions
How to do it…
How it works…
See also

Registering a target
How to do it…
How it works…
See also

9. Using LLVM for Various Useful Projects
Introduction
Exception handling in LLVM

Getting ready...
How to do it…
How it works…
See also

Using sanitizers
Getting ready
How to do it…
How it works…
See also…

Writing the garbage collector with LLVM
Getting ready
How to do it…
How it works…
See also

Converting LLVM IR to JavaScript
Getting ready
How to do it…
See more

Using the Clang Static Analyzer
Getting ready
How to do it…
How it works…
See also

Using bugpoint
Getting ready
How to do it…
How it works…
See also

Using LLDB
Getting ready
How to do it…
See also

Using LLVM utility passes
Getting ready
How to do it...
See also

Index

LLVM Cookbook

LLVM Cookbook
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher, except
in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: May 2015

Production reference: 1270515

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-598-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Mayur Pandey

Suyog Sarda

Reviewers

Logan Chien

Michael Haidl

Dave (Jing) Tian

Commissioning Editor

Nadeem N. Bagban

Acquisition Editor

Vivek Anantharaman

Content Development Editor

Shweta Pant

Technical Editors

Prajakta Mhatre

Rohith Rajan

Rupali Shrawane

Copy Editors

Vikrant Phadke

Sameen Siddiqui

Project Coordinator

Shipra Chawhan

Proofreader

Stephen Copestake

Safis Editing

Indexer

Tejal Soni

Graphics

Disha Haria

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

About the Authors
Mayur Pandey is a professional software engineer and an open source enthusiast. He focuses on
compiler development and compiler tools. He is an active contributor to the LLVM open source
community. He has been part of the compiler team for the Tizen project, and has hands-on experience
with other proprietary compilers.

Mayur earned a bachelor's degree in information technology from Motilal Nehru National Institute of
Technology Allahabad, India. Currently, he lives in Bengaluru, India.

I would like to thank my family and friends. They made it possible for me to complete the book by
taking care of my other commitments and always encouraging me.

Suyog Sarda is a professional software engineer and an open source enthusiast. He focuses on
compiler development and compiler tools. He is an active contributor to the LLVM open source
community. He has been part of the compiler team for the Tizen project. Suyog was also involved in
code performance improvements for the ARM and the x86 architecture. He has hands-on experience
in other proprietary compilers. His interest in compiler development lies more in code optimization
and vectorization.

Apart from compilers, Suyog is also interested in Linux kernel development. He has published a
technical paper titled Secure Co-resident Virtualization in Multicore Systems by VM Pinning and
Page Coloring at the IEEE Proceedings of the 2012 International Conference on Cloud Computing,
Technologies, Applications, and Management at Birla Institute of Technology, Dubai. He earned a
bachelor's degree in computer technology from College of Engineering, Pune, India. Currently, he
lives in Bengaluru, India.

I would like to thank my family and friends. I would also like to thank the LLVM open-source
community for always being helpful.

About the Reviewers
Logan Chien received his master's degree in computer science from National Taiwan University. His
research interests include compiler design, compiler optimization, and virtual machines. He is a full-
time software engineer. In his free time, he works on several open source projects, such as LLVM and
Android. Logan has participated in the LLVM project since 2012.

Michael Haidl is a high performance computing engineer with focus on many core architectures that
consist of Graphics Processing Units (GPUs) and Intel Xeon Phi accelerators. He has been a C++
developer for more than 14 years, and has gained many skills in parallel programming, exploiting
various programming models (CUDA) over the years. He has a diploma in computer science and
physics. Currently, Michael is employed as a research associate at the University of Münster,
Germany, and is writing his PhD thesis with focus on compilation techniques for GPUs utilizing the
LLVM infrastructure.

I would like to thank my wife for supporting me every day with her smiles and love. I would also like
to thank the entire LLVM community for all the hard work they have put into LLVM/Clang and other
LLVM projects. It is amazing to see how fast LLVM evolves.

Dave (Jing) Tian is a graduate research fellow and PhD student in the Department of Computer &
Information Science & Engineering (CISE) at the University of Florida. He is a founding member of
the SENSEI center. His research direction involves system security, embedded system security,
trusted computing, static code analysis for security, and virtualization. He is interested in Linux kernel
hacking and compiler hacking.

Dave spent a year on AI and machine learning, and taught Python and operating systems at the
University of Oregon. Before that, he worked as a software developer in the LCP (Linux control
platform) group in research and development at Alcatel-Lucent (formerly Lucent Technologies), for
approximately 4 years. He holds a bachelor's degree in science and a master's degree in electronics
engineering in China. You can reach him at <root@davejingtian.org> and visit his website
http://davejingtian.org.

I would like to thank the author of this book, who has done a good job. Thanks to the editors of the
book at Packt Publishing, who made this book perfect and offered me the opportunity to review such a
nice book.

mailto:root@davejingtian.org
http://davejingtian.org

www.PacktPub.com
Support files, eBooks, discount offers, and
more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
<service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view 9 entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.PacktPub.com

Preface
A programmer might have come across compilers at some or the other point when programming.
Simply speaking, a compiler converts a human-readable, high-level language into machine-executable
code. But have you ever wondered what goes on under the hood? A compiler does lot of processing
before emitting optimized machine code. Lots of complex algorithms are involved in writing a good
compiler.

This book travels through all the phases of compilation: frontend processing, code optimization, code
emission, and so on. And to make this journey easy, LLVM is the simplest compiler infrastructure to
study. It's a modular, layered compiler infrastructure where every phase is dished out as a separate
recipe. Written in object-oriented C++, LLVM gives programmers a simple interface and lots of APIs
to write their own compiler.

As authors, we maintain that simple solutions frequently work better than complex solutions;
throughout this book, we'll look at a variety of recipes that will help develop your skills, make you
consider all the compiling options, and understand that there is more to simply compiling code than
meets the eye.

We also believe that programmers who are not involved in compiler development will benefit from
this book, as knowledge of compiler implementation will help them code optimally next time they
write code.

We hope you will find the recipes in this book delicious, and after tasting all the recipes, you will be
able to prepare your own dish of compilers. Feeling hungry? Let's jump into the recipes!

What this book covers
Chapter 1, LLVM Design and Use, introduces the modular world of LLVM infrastructure, where you
learn how to download and install LLVM and Clang. In this chapter, we play with some examples to
get accustomed to the workings of LLVM. We also see some examples of various frontends.

Chapter 2, Steps in Writing a Frontend, explains the steps to write a frontend for a language. We will
write a bare-metal toy compiler frontend for a basic toy language. We will also see how a frontend
language can be converted into the LLVM intermediate representation (IR).

Chapter 3, Extending the Frontend and Adding JIT Support, explores the more advanced features of
the toy language and the addition of JIT support to the frontend. We implement some powerful features
of a language that are found in most modern programming languages.

Chapter 4, Preparing Optimizations, takes a look at the pass infrastructure of the LLVM IR. We
explore various optimization levels, and the optimization techniques kicking at each level. We also
see a step-by-step approach to writing our own LLVM pass.

Chapter 5, Implementing Optimizations, demonstrates how we can implement various common
optimization passes on LLVM IR. We also explore some vectorization techniques that are not yet
present in the LLVM open source code.

Chapter 6, Target-independent Code Generator, takes us on a journey through the abstract
infrastructure of a target-independent code generator. We explore how LLVM IR is converted to
Selection DAGs, which are further processed to emit target machine code.

Chapter 7, Optimizing the Machine Code, examines how Selection DAGs are optimized and how
target registers are allocated to variables. This chapter also describes various optimization
techniques on Selection DAGs as well as various register allocation techniques.

Chapter 8, Writing an LLVM Backend, takes us on a journey of describing a target architecture. This
chapter covers how to describe registers, instruction sets, calling conventions, encoding, subtarget
features, and so on.

Chapter 9, Using LLVM for Various Useful Projects, explores various other projects where LLVM
IR infrastructure can be used. Remember that LLVM is not just a compiler; it is a compiler
infrastructure. This chapter explores various projects that can be applied to a code snippet to get
useful information from it.

What you need for this book
All you need to work through most of the examples covered in this book is a Linux machine,
preferably Ubuntu. You will also need a simple text or code editor, Internet access, and a browser.
We recommend installing the meld tool for comparison of two files; it works well on the Linux
platform.

Who this book is for
The book is for compiler programmers who are familiar with concepts of compilers and want to
indulge in understanding, exploring, and using LLVM infrastructure in a meaningful way in their work.

This book is also for programmers who are not directly involved in compiler projects but are often
involved in development phases where they write thousands of lines of code. With knowledge of how
compilers work, they will be able to code in an optimal way and improve performance with clean
code.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, How
it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections.

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts
through the use of the include directive."

A block of code is set as follows:

primary := identifier_expr
:=numeric_expr
:=paran_expr

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

primary := identifier_expr
:=numeric_expr
:=paran_expr

Any command-line input or output is written as follows:

$ cat testfile.ll

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: "Clicking on the Next button moves you to the
next screen."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what
you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will
really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title
in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to
a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com for all the
Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used in this
book. The color images will help you better understand the changes in the output. You can download
this file from: https://www.packtpub.com/sites/default/files/downloads/5981OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded to our website or added to any list of existing errata
under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we
take the protection of our copyright and licenses very seriously. If you come across any illegal copies
of our works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5981OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. LLVM Design and Use
In this chapter, we will cover the following topics:

Understanding modular design
Cross-compiling Clang/LLVM
Converting a C source code to LLVM assembly
Converting IR to LLVM bitcode
Converting LLVM bitcode to target machine assembly
Converting LLVM bitcode back to LLVM assembly
Transforming LLVM IR
Linking LLVM bitcode
Executing LLVM bitcode
Using C frontend Clang
Using the GO frontend
Using DragonEgg

Introduction
In this recipe, you get to know about LLVM, its design, and how we can make multiple uses out of the
various tools it provides. You will also look into how you can transform a simple C code to the
LLVM intermediate representation and how you can transform it into various forms. You will also
learn how the code is organized within the LLVM source tree and how can you use it to write a
compiler on your own later.

Understanding modular design
LLVM is designed as a set of libraries unlike other compilers such as GNU Compiler Collection
(GCC). In this recipe, LLVM optimizer will be used to understand this design. As LLVM optimizer's
design is library-based, it allows you to order the passes to be run in a specified order. Also, this
design allows you to choose which optimization passes you can run—that is, there might be a few
optimizations that might not be useful to the type of system you are designing, and only a few
optimizations will be specific to the system. When looking at traditional compiler optimizers, they are
built as a tightly interconnected mass of code, that is difficult to break down into small parts that you
can understand and use easily. In LLVM, you need not know about how the whole system works to
know about a specific optimizer. You can just pick one optimizer and use it without having to worry
about other components attached to it.

Before we go ahead and look into this recipe, we must also know a little about LLVM assembly
language. The LLVM code is represented in three forms: in memory compiler Intermediate
Representation (IR), on disk bitcode representation, and as human readable assembly. LLVM is a
Static Single Assignment (SSA)-based representation that provides type safety, low level
operations, flexibility, and the capability to represent all the high-level languages cleanly. This
representation is used throughout all the phases of LLVM compilation strategy. The LLVM
representation aims to be a universal IR by being at a low enough level that high-level ideas may be
cleanly mapped to it. Also, LLVM assembly language is well formed. If you have any doubts about
understanding the LLVM assembly mentioned in this recipe, refer to the link provided in the See also
section at the end of this recipe.

Getting ready
We must have installed the LLVM toolchain on our host machine. Specifically, we need the opt tool.

How to do it...
We will run two different optimizations on the same code, one-by-one, and see how it modifies the
code according to the optimization we choose.

1. First of all, let us write a code we can input for these optimizations. Here we will write it into a
file named testfile.ll:

$ cat testfile.ll
define i32 @test1(i32 %A) {
 %B = add i32 %A, 0
 ret i32 %B
}

define internal i32 @test(i32 %X, i32 %dead) {
 ret i32 %X
}

define i32 @caller() {
 %A = call i32 @test(i32 123, i32 456)
 ret i32 %A
}

2. Now, run the opt tool for one of the optimizations—that is, for combining the instruction:

$ opt –S –instcombine testfile.ll –o output1.ll

3. View the output to see how instcombine has worked:

$ cat output1.ll
; ModuleID = 'testfile.ll'

define i32 @test1(i32 %A) {
 ret i32 %A
}

define internal i32 @test(i32 %X, i32 %dead) {
 ret i32 %X
}

define i32 @caller() {
 %A = call i32 @test(i32 123, i32 456)
 ret i32 %A
}

4. Run the opt command for dead argument elimination optimization:

$ opt –S –deadargelim testfile.ll –o output2.ll

5. View the output, to see how deadargelim has worked:

$ cat output2.ll
; ModuleID = testfile.ll'

define i32 @test1(i32 %A) {
 %B = add i32 %A, 0
 ret i32 %B
}

define internal i32 @test(i32 %X) {
 ret i32 %X
}

define i32 @caller() {
 %A = call i32 @test(i32 123)
 ret i32 %A
}

How it works...

In the preceding example, we can see that, for the first command, the instcombine pass is run, which
combines the instructions and hence optimizes %B = add i32 %A, 0; ret i32 %B to ret i32 %A
without affecting the code.

In the second case, when the deadargelim pass is run, we can see that there is no modification in
the first function, but the part of code that was not modified last time gets modified with the function
arguments that are not used getting eliminated.

LLVM optimizer is the tool that provided the user with all the different passes in LLVM. These passes
are all written in a similar style. For each of these passes, there is a compiled object file. Object files
of different passes are archived into a library. The passes within the library are not strongly
connected, and it is the LLVM PassManager that has the information about dependencies among the
passes, which it resolves when a pass is executed. The following image shows how each pass can be
linked to a specific object file within a specific library. In the following figure, the PassA references
LLVMPasses.a for PassA.o, whereas the custom pass refers to a different library MyPasses.a for
the MyPass.o object file.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

There's more...
Similar to the optimizer, the LLVM code generator also makes use of its modular design, splitting the

http://www.packtpub.com
http://www.packtpub.com/support

code generation problem into individual passes: instruction selection, register allocation, scheduling,
code layout optimization, and assembly emission. Also, there are many built-in passes that are run by
default. It is up to the user to choose which passes to run.

See also
In the upcoming chapters, we will see how to write our own custom pass, where we can choose
which of the optimization passes we want to run and in which order. Also, for a more detailed
understanding, refer to http://www.aosabook.org/en/llvm.html.
To understand more about LLVM assembly language, refer to http://llvm.org/docs/LangRef.html.

http://www.aosabook.org/en/llvm.html
http://llvm.org/docs/LangRef.html

Cross-compiling Clang/LLVM
By cross-compiling we mean building a binary on one platform (for example, x86) that will be run on
another platform (for example, ARM). The machine on which we build the binary is called the host,
and the machine on which the generated binary will run is called the target. The compiler that builds
code for the same platform on which it is running (the host and target platforms are the same) is called
a native assembler, whereas the compiler that builds code for a target platform different from the
host platform is called a cross-compiler.

In this recipe, cross-compilation of LLVM for a platform different than the host platform will be
shown, so that you can use the built binaries for the required target platform. Here, cross-compiling
will be shown using an example where cross-compilation from host platform x86_64 for target
platform ARM will be done. The binaries thus generated can be used on a platform with ARM
architecture.

Getting ready
The following packages need to be installed on your system (host platform):

cmake

ninja-build (from backports in Ubuntu)
gcc-4.x-arm-linux-gnueabihf

gcc-4.x-multilib-arm-linux-gnueabihf

binutils-arm-linux-gnueabihf

libgcc1-armhf-cross

libsfgcc1-armhf-cross

libstdc++6-armhf-cross

libstdc++6-4.x-dev-armhf-cross

install llvm on your host platform

How to do it...
To compile for the ARM target from the host architecture, that is X86_64 here, you need to perform
the following steps:

1. Add the following cmake flags to the normal cmake build for LLVM:

-DCMAKE_CROSSCOMPILING=True
-DCMAKE_INSTALL_PREFIX= path-where-you-want-the-toolchain(optional)
-DLLVM_TABLEGEN=<path-to-host-installed-llvm-toolchain-bin>/llvm-tblgen
-DCLANG_TABLEGEN=< path-to-host-installed-llvm-toolchain-bin >/clang-tblgen
-DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf
-DLLVM_TARGET_ARCH=ARM
-DLLVM_TARGETS_TO_BUILD=ARM
-DCMAKE_CXX_FLAGS='-target armv7a-linux-gnueabihf -mcpu=cortex-a9 -
I/usr/arm-linux-gnueabihf/include/c++/4.x.x/arm-linux-gnueabihf/ -I/usr/arm-

linux-gnueabihf/include/ -mfloat-abi=hard -ccc-gcc-name arm-linux-gnueabihf-
gcc'

2. If using your platform compiler, run:

$ cmake -G Ninja <llvm-source-dir> <options above>

If using Clang as the cross-compiler, run:

$ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options above>

If you have clang/Clang++ on the path, it should work fine.
3. To build LLVM, simply type:

$ ninja

4. After the LLVM/Clang has built successfully, install it with the following command:

$ ninja install

This will create a sysroot on the install-dir location if you have specified the
DCMAKE_INSTALL_PREFIX options

How it works...
The cmake package builds the toolchain for the required platform by making the use of option flags
passed to cmake, and the tblgen tools are used to translate the target description files into C++ code.
Thus, by using it, the information about targets is obtained, for example—what instructions are
available on the target, the number of registers, and so on.

Note

If Clang is used as the cross-compiler, there is a problem in the LLVM ARM backend that produces
absolute relocations on position-independent code (PIC), so as a workaround, disable PIC at the
moment.

The ARM libraries will not be available on the host system. So, either download a copy of them or
build them on your system.

Converting a C source code to LLVM assembly
Here we will convert a C code to intermediate representation in LLVM using the C frontend Clang.

Getting ready
Clang must be installed in the PATH.

How to do it...
1. Lets create a C code in the multiply.c file, which will look something like the following:

$ cat multiply.c
int mult() {
int a =5;
int b = 3;
int c = a * b;
return c;
}

2. Use the following command to generate LLVM IR from the C code:

$ clang -emit-llvm -S multiply.c -o multiply.ll

3. Have a look at the generated IR:

$ cat multiply.ll
; ModuleID = 'multiply.c'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable
define i32 @mult() #0 {
 %a = alloca i32, align 4
 %b = alloca i32, align 4
 %c = alloca i32, align 4
 store i32 5, i32* %a, align 4
 store i32 3, i32* %b, align 4
 %1 = load i32* %a, align 4
 %2 = load i32* %b, align 4
 %3 = mul nsw i32 %1, %2
 store i32 %3, i32* %c, align 4
 %4 = load i32* %c, align 4
 ret i32 %4
}

We can also use the cc1 for generating IR:

$ clang -cc1 -emit-llvm testfile.c -o testfile.ll

How it works...
The process of C code getting converted to IR starts with the process of lexing, wherein the C code is
broken into a token stream, with each token representing an Identifier, Literal, Operator, and so on.
This stream of tokens is fed to the parser, which builds up an abstract syntax tree with the help of
Context free grammar (CFG) for the language. Semantic analysis is done afterwards to check
whether the code is semantically correct, and then we generate code to IR.

Here we use the Clang frontend to generate the IR file from C code.

See also
In the next chapter, we will see how the lexer and parser work and how code generation is done.
To understand the basics of LLVM IR, you can refer to http://llvm.org/docs/LangRef.html.

http://llvm.org/docs/LangRef.html

Converting IR to LLVM bitcode
In this recipe, you will learn to generate LLVM bit code from IR. The LLVM bit code file format (also
known as bytecode) is actually two things: a bitstream container format and an encoding of LLVM IR
into the container format.

Getting Ready
The llvm-as tool must be installed in the PATH.

How to do it...
Do the following steps:

1. First create an IR code that will be used as input to llvm-as:

$ cat test.ll
define i32 @mult(i32 %a, i32 %b) #0 {
 %1 = mul nsw i32 %a, %b
 ret i32 %1
}

2. To convert LLVM IR in test.ll to bitcode format, you need to use the following command:

llvm-as test.ll –o test.bc

3. The output is generated in the test.bc file, which is in bit stream format; so, when we want to
have a look at output in text format, we get it as shown in the following screenshot:

Since this is a bitcode file, the best way to view its content would be by using the hexdump tool.
The following screenshot shows the output of hexdump:

How it works...
The llvm-as is the LLVM assembler. It converts the LLVM assembly file that is the LLVM IR into
LLVM bitcode. In the preceding command, it takes the test.ll file as the input and outputs, and
test.bc as the bitcode file.

There's more...
To encode LLVM IR into bitcode, the concept of blocks and records is used. Blocks represent regions
of bitstream, for example—a function body, symbol table, and so on. Each block has an ID specific to
its content (for example, function bodies in LLVM IR are represented by ID 12). Records consist of a
record code and an integer value, and they describe the entities within the file such as instructions,
global variable descriptors, type descriptions, and so on.

Bitcode files for LLVM IR might be wrapped in a simple wrapper structure. This structure contains a
simple header that indicates the offset and size of the embedded BC file.

See also
To get a detailed understanding of the LLVM the bitstream file format, refer to
http://llvm.org/docs/BitCodeFormat.html#abstract

http://llvm.org/docs/BitCodeFormat.html#abstract

Converting LLVM bitcode to target machine
assembly
In this recipe, you will learn how to convert the LLVM bitcode file to target specific assembly code.

Getting ready
The LLVM static compiler llc should be in installed from the LLVM toolchain.

How to do it...
Do the following steps:

1. The bitcode file created in the previous recipe, test.bc, can be used as input to llc here.
Using the following command, we can convert LLVM bitcode to assembly code:

$ llc test.bc –o test.s

2. The output is generated in the test.s file, which is the assembly code. To have a look at that,
use the following command lines:

$ cat test.s
.text
.file "test.bc"
.globl mult
.align 16, 0x90
.type mult,@function
mult: # @mult
.cfi_startproc
BB#0:
Pushq %rbp
.Ltmp0:
.cfi_def_cfa_offset 16
.Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmp2:
.cfi_def_cfa_register %rbp
imull %esi, %edi
movl %edi, %eax
popq %rbp
retq
.Ltmp3:
.size mult, .Ltmp3-mult
.cfi_endproc

3. You can also use Clang to dump assembly code from the bitcode file format. By passing the –S
option to Clang, we get test.s in assembly format when the test.bc file is in bitstream file

format:

$ clang -S test.bc -o test.s –fomit-frame-pointer # using the clang front
end

The test.s file output is the same as that of the preceding example. We use the additional
option fomit-frame-pointer, as Clang by default does not eliminate the frame pointer
whereas llc eliminates it by default.

How it works...
The llc command compiles LLVM input into assembly language for a specified architecture. If we do
not mention any architecture as in the preceding command, the assembly will be generated for the host
machine where the llc command is being used. To generate executable from this assembly file, you
can use assembler and linker.

There's more...
By specifying -march=architecture flag in the preceding command, you can specify the target
architecture for which the assembly needs to be generated. Using the -mcpu=cpu flag setting, you
can specify a CPU within the architecture to generate code. Also by specifying -
regalloc=basic/greedy/fast/pbqp, you can specify the type of register allocation to be used.

Converting LLVM bitcode back to LLVM
assembly
In this recipe, you will convert LLVM bitcode back to LLVM IR. Well, this is actually possible using
the LLVM disassembler tool called llvm-dis.

Getting ready
To do this, you need the llvm-dis tool installed.

How to do it...
To see how the bitcode file is getting converted to IR, use the test.bc file generated in the recipe
Converting IR to LLVM Bitcode. The test.bc file is provided as the input to the llvm-dis tool.
Now proceed with the following steps:

1. Using the following command shows how to convert a bitcode file to an the one we had created
in the IR file:

$ llvm-dis test.bc –o test.ll

2. Have a look at the generated LLVM IR by the following:

| $ cat test.ll
; ModuleID = 'test.bc'

define i32 @mult(i32 %a, i32 %b) #0 {
 %1 = mul nsw i32 %a, %b
 ret i32 %1
}

The output test.ll file is the same as the one we created in the recipe Converting IR to LLVM
Bitcode.

How it works...
The llvm-dis command is the LLVM disassembler. It takes an LLVM bitcode file and converts it into
LLVM assembly language.

Here, the input file is test.bc, which is transformed to test.ll by llvm-dis.

If the filename is omitted, llvm-dis reads its input from standard input.

Transforming LLVM IR
In this recipe, we will see how we can transform the IR from one form to another using the opt tool.
We will see different optimizations being applied to IR code.

Getting ready
You need to have the opt tool installed.

How to do it...
The opt tool runs the transformation pass as in the following command:

$opt –passname input.ll –o output.ll

1. Let's take an actual example now. We create the LLVM IR equivalent to the C code used in the
recipe Converting a C source code to LLVM assembly:

$ cat multiply.c
int mult() {
int a =5;
int b = 3;
int c = a * b;
return c;
}

2. Converting and outputting it, we get the unoptimized output:

$ clang -emit-llvm -S multiply.c -o multiply.ll
$ cat multiply.ll
; ModuleID = 'multiply.c'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable
define i32 @mult() #0 {
 %a = alloca i32, align 4
 %b = alloca i32, align 4
 %c = alloca i32, align 4
 store i32 5, i32* %a, align 4
 store i32 3, i32* %b, align 4
 %1 = load i32* %a, align 4
 %2 = load i32* %b, align 4
 %3 = mul nsw i32 %1, %2
 store i32 %3, i32* %c, align 4
 %4 = load i32* %c, align 4
 ret i32 %4
}

3. Now use the opt tool to transform it to a form where memory is promoted to register:

$ opt -mem2reg -S multiply.ll -o multiply1.ll
$ cat multiply1.ll
; ModuleID = 'multiply.ll'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable
define i32 @mult(i32 %a, i32 %b) #0 {
 %1 = mul nsw i32 %a, %b
 ret i32 %1
}

How it works...
The opt, LLVM optimizer, and analyzer tools take the input.ll file as the input and run the pass
passname on it. The output after running the pass is obtained in the output.ll file that contains the
IR code after the transformation. There can be more than one pass passed to the opt tool.

There's more...
When the –analyze option is passed to opt, it performs various analyses of the input source and
prints results usually on the standard output or standard error. Also, the output can be redirected to a
file when it is meant to be fed to another program.

When the –analyze option is not passed to opt, it runs the transformation passes meant to optimize the
input file.

Some of the important transformations are listed as follows, which can be passed as a flag to the opt
tool:

adce: Aggressive Dead Code Elimination
bb-vectorize: Basic-Block Vectorization
constprop: Simple constant propagation
dce: Dead Code Elimination
deadargelim: Dead Argument Elimination
globaldce: Dead Global Elimination
globalopt: Global Variable Optimizer
gvn: Global Value Numbering
inline: Function Integration/Inlining
instcombine: Combine redundant instructions
licm: Loop Invariant Code Motion
loop: unswitch: Unswitch loops
loweratomic: Lower atomic intrinsics to non-atomic form
lowerinvoke: Lower invokes to calls, for unwindless code generators
lowerswitch: Lower SwitchInsts to branches
mem2reg: Promote Memory to Register

memcpyopt: MemCpy Optimization
simplifycfg: Simplify the CFG
sink: Code sinking
tailcallelim: Tail Call Elimination

Run at least some of the preceding passes to get an understanding of how they work. To get to the
appropriate source code on which these passes might be applicable, go to the
llvm/test/Transforms directory. For each of the above mentioned passes, you can see the test
codes. Apply the relevant pass and see how the test code is getting modified.

Note

To see the mapping of how C code is converted to IR, after converting the C code to IR, as discussed
in an earlier recipe Converting a C source code to LLVM assembly, run the mem2reg pass. It will
then help you understand how a C instruction is getting mapped into IR instructions.

Linking LLVM bitcode
In this section, you will link previously generated .bc files to get one single bitcode file containing
all the needed references.

Getting ready
To link the .bc files, you need the llvm-link tool.

How to do it...
Do the following steps:

1. To show the working of llvm-link, first write two codes in different files, where one makes a
reference to the other:

$ cat test1.c
int func(int a) {
a = a*2;
return a;
}
$ cat test2.c
#include<stdio.h>
extern int func(int a);
int main() {
int num = 5;
num = func(num);
printf("number is %d\n", num);
return num;
}

2. Using the following formats to convert this C code to bitstream file format, first convert to .ll
files, then from .ll files to .bc files:

$ clang -emit-llvm -S test1.c -o test1.ll
$ clang -emit-llvm -S test2.c -o test2.ll
$ llvm-as test1.ll -o test1.bc
$ llvm-as test2.ll -o test2.bc

We get test1.bc and test2.bc with test2.bc making a reference to func syntax in the
test1.bc file.

3. Invoke the llvm-link command in the following way to link the two LLVM bitcode files:

$ llvm-link test1.bc test2.bc –o output.bc

We provide multiple bitcode files to the llvm-link tool, which links them together to generate a
single bitcode file. Here, output.bc is the generated output file. We will execute this bitcode file in

the next recipe Executing LLVM bitcode.

How it works...
The llvm-link works using the basic functionality of a linker—that is, if a function or variable
referenced in one file is defined in the other file, it is the job of linker to resolve all the references
made in a file and defined in the other file. But note that this is not the traditional linker that links
various object files to generate a binary. The llvm-link tool links bitcode files only.

In the preceding scenario, it is linking test1.bc and test2.bc files to generate the output.bc file,
which has references resolved.

Note

After linking the bitcode files, we can generate the output as an IR file by giving –S option to the
llvm-link tool.

Executing LLVM bitcode
In this recipe, you will execute the LLVM bitcode that was generated in previous recipes.

Getting ready
To execute the LLVM bitcode, you need the lli tool.

How to do it...
We saw in the previous recipe how to create a single bitstream file after linking the two .bc files
with one referencing the other to define func. By invoking the lli command in the following way, we
can execute the output.bc file generated. It will display the output on the standard output:

| $ lli output.bc
 number is 10

The output.bc file is the input to lli, which will execute the bitcode file and display the output, if
any, on the standard output. Here the output is generated as number is 10, which is a result of the
execution of the output.bc file formed by linking test1.c and test2.c in the previous recipe. The
main function in the test2.c file calls the function func in the test1.c file with integer 5 as the
argument to the function. The func function doubles the input argument and returns the result to main
the function that outputs it on the standard output.

How it works...
The lli tool command executes the program present in LLVM bitcode format. It takes the input in
LLVM bitcode format and executes it using a just-in-time compiler, if there is one available for the
architecture, or an interpreter.

If lli is making use of a just-in-time compiler, then it effectively takes all the code generator options
as that of llc.

See also
The Adding JIT support for a language recipe in Chapter 3, Extending the Frontend and
Adding JIT support.

Using the C frontend Clang
In this recipe, you will get to know how the Clang frontend can be used for different purposes.

Getting ready
You will need Clang tool.

How to do it…
Clang can be used as the high-level compiler driver. Let us show it using an example:

1. Create a hello world C code, test.c:

$ cat test.c
#include<stdio.h>
int main() {
printf("hello world\n");
return 0; }

2. Use Clang as a compiler driver to generate the executable a.out file, which on execution gives
the output as expected:

$ clang test.c
$./a.out
hello world

Here the test.c file containing C code is created. Using Clang we compile it and produce an
executable that on execution gives the desired result.

3. Clang can be used in preprocessor only mode by providing the –E flag. In the following
example, create a C code having a #define directive defining the value of MAX and use this
MAX as the size of the array you are going to create:

$ cat test.c
#define MAX 100
void func() {
int a[MAX];
}

4. Run the preprocessor using the following command, which gives the output on standard output:

$ clang test.c -E
1 "test.c"
1 "<built-in>" 1
1 "<built-in>" 3
308 "<built-in>" 3
1 "<command line>" 1
1 "<built-in>" 2
1 "test.c" 2

void func() {
int a[100];
}

In the test.c file, which will be used in all the subsequent sections of this recipe, MAX is
defined to be 100, which on preprocessing is substituted to MAX in a[MAX], which becomes
a[100].

5. You can print the AST for the test.c file from the preceding example using the following
command, which displays the output on standard output:

| $ clang -cc1 test.c -ast-dump
TranslationUnitDecl 0x3f72c50 <<invalid sloc>> <invalid sloc>|-TypedefDecl
0x3f73148 <<invalid sloc>> <invalid sloc> implicit __int128_t '__int128'|-
TypedefDecl 0x3f731a8 <<invalid sloc>> <invalid sloc> implicit __uint128_t
'unsigned __int128'|-TypedefDecl 0x3f73518 <<invalid sloc>> <invalid sloc>
implicit __builtin_va_list '__va_list_tag [1]'`-FunctionDecl 0x3f735b8
<test.c:3:1, line:5:1> line:3:6 func 'void ()'`-CompoundStmt 0x3f73790
<col:13, line:5:1>`-DeclStmt 0x3f73778 <line:4:1, col:11>`-VarDecl 0x3f73718
<col:1, col:10> col:5 a 'int [100]'

Here, the –cc1 option ensures that only the compiler front-end should be run, not the driver, and
it prints the AST corresponding to the test.c file code.

6. You can generate the LLVM assembly for the test.c file in previous examples, using the
following command:

|$ clang test.c -S -emit-llvm -o -
|; ModuleID = 'test.c'
|target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|target triple = "x86_64-unknown-linux-gnu"
|
|; Function Attrs: nounwind uwtable
|define void @func() #0 {
|%a = alloca [100 x i32], align 16
|ret void
|}

The –S and –emit-llvm flag ensure the LLVM assembly is generated for the test.c code.
7. To get machine code use for the same test.c testcode, pass the –S flag to Clang. It generates the

output on standard output because of the option –o –:

|$ clang -S test.c -o -
| .text
| .file "test.c"
| .globl func
| .align 16, 0x90
| .type func,@function
|func: # @func
| .cfi_startproc
|# BB#0:

| pushq %rbp
|.Ltmp0:
| .cfi_def_cfa_offset 16
|.Ltmp1:
| .cfi_offset %rbp, -16
| movq %rsp, %rbp
|.Ltmp2:
| .cfi_def_cfa_register %rbp
| popq %rbp
| retq
|.Ltmp3:
| .size func, .Ltmp3-func
| .cfi_endproc

When the –S flag is used alone, machine code is generated by the code generation process of the
compiler. Here, on running the command, machine code is output on the standard output as we use –o
– options.

How it works...
Clang works as a preprocessor, compiler driver, frontend, and code generator in the preceding
examples, thus giving the desired output as per the input flag given to it.

See also
This was a basic introduction to how Clang can be used. There are also many other flags that can
be passed to Clang, which makes it perform different operation. To see the list, use Clang –help.

Using the GO frontend
The llgo compiler is the LLVM-based frontend for Go written in Go language only. Using this
frontend, we can generate the LLVM assembly code from a program written in Go.

Getting ready
You need to download the llgo binaries or build llgo from the source code and add the binaries in
the PATH file location as configured.

How to do it…
Do the following steps:

1. Create a Go source file, for example, that will be used for generating the LLVM assembly using
llgo. Create test.go:

|$ cat test.go
|package main
|import "fmt"
|func main() {
| fmt.Println("Test Message")
|}

2. Now, use llgo to get the LLVM assembly:

$llgo -dump test.go
; ModuleID = 'main'
target datalayout = "e-p:64:64:64..."
target triple = "x86_64-unknown-linux"
%0 = type { i8*, i8* }
....

How it works…
The llgo compiler is the frontend for the Go language; it takes the test.go program as its input and
emits the LLVM IR.

See also
For information about how to get and install llgo, refer to https://github.com/go-llvm/llgo

https://github.com/go-llvm/llgo

Using DragonEgg
Dragonegg is a gcc plugin that allows gcc to make use of the LLVM optimizer and code generator
instead of gcc's own optimizer and code generator.

Getting ready
You need to have gcc 4.5 or above, with the target machine being x86-32/x86-64 and an ARM
processor. Also, you need to download the dragonegg source code and build the dragonegg.so file.

How to do It…
Do the following steps:

1. Create a simple hello world program:

$ cat testprog.c
#include<stdio.h>
int main() {
printf("hello world");
}

2. Compile this program with your gcc; here we use gcc-4.5:

$ gcc testprog.c -S -O1 -o -
 .file " testprog.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "Hello world!"
 .text
.globl main
 .type main, @function
main:
 subq $8, %rsp
 movl $.LC0, %edi
 call puts
 movl $0, %eax
 addq $8, %rsp
 ret
 .size main, .-main

3. Using the -fplugin=path/dragonegg.so flag in the command line of gcc makes gcc use
LLVM's optimizer and LLVM codegen:

$ gcc testprog.c -S -O1 -o - -fplugin=./dragonegg.so
 .file " testprog.c"
Start of file scope inline assembly
 .ident "GCC: (GNU) 4.5.0 20090928 (experimental) LLVM: 82450:82981"
End of file scope inline assembly

 .text
 .align 16
 .globl main
 .type main,@function
main:
 subq $8, %rsp
 movl $.L.str, %edi
 call puts
 xorl %eax, %eax
 addq $8, %rsp
 ret
 .size main, .-main
 .type .L.str,@object
 .section .rodata.str1.1,"aMS",@progbits,1
.L.str:
 .asciz "Hello world!"
 .size .L.str, 13

 .section .note.GNU-stack,"",@progbits

See also
To know about how to get the source code and installation procedure, refer to
http://dragonegg.llvm.org/

http://dragonegg.llvm.org/

Chapter 2. Steps in Writing a Frontend
In this chapter, we will cover the following recipes:

Defining a TOY language
Implementing a lexer
Defining Abstract Syntax Tree
Implementing a parser
Parsing simple expressions
Parsing binary expressions
Invoking a driver for parsing
Running lexer and parser on our TOY language
Defining IR code generation methods for each AST class
Generating IR code for expressions
Generating IR code for functions
Adding IR optimization support

Introduction
In this chapter, you will get to know about how to write a frontend for a language. By making use of a
custom-defined TOY language, you will have recipes on how to write a lexer and a parser, and how
to generate IR code from the Abstract Syntax Tree (AST) generated by the frontend.

Defining a TOY language
Before implementing a lexer and parser, the syntax and grammar of the language need to be
determined first. In this chapter, a TOY language is used to demonstrate how a lexer and a parser can
be implemented. The purpose of this recipe is to show how a language is skimmed through. For this
purpose, the TOY language to be used is simple but meaningful.

A language typically has some variables, some function calls, some constants, and so on. To keep
things simple, our TOY language in consideration has only numeric constants of 32-bit Integer type A,
a variable that need not declare its type (like Python, in contrast to C/C++/Java, which require a type
declaration) in the TOY language.

How to do it…
The grammar can be defined as follows (the production rules are defined below, with non-terminals
on Left Hand Side (LHS) and a combination of terminals and non-terminals on Right Hand Side
(RHS); when LHS is encountered, it yields appropriate RHS defined in the production rule):

1. A numeric expression will give a constant number:

numeric_expr := number

2. A parenthesis expression will have an expression in between an opening and a closing bracket:

paran_expr := '(' expression ')'

3. An identifier expression will either yield an identifier or a function call:

identifier_expr
:= identifier
:= identifier '('expr_list ')'

4. If identifier _expr is a function call, it will either have no arguments or list of arguments
separated by a comma:

expr_list
:= (empty)
:= expression (',' expression)*

5. There will be some primary expression, the starting point of the grammar, which may yield an
identifier expression, a numeric expression, or a parenthesis expression:

primary := identifier_expr
:=numeric_expr
:=paran_expr

6. An expression can lead to a binary expression:

expression := primary binoprhs

7. A binary operation with RHS can yield combinations of binary operators and expressions:

binoprhs := (binoperator primary)*
binoperators := '+'/'-'/'*'/'/'

8. A function declaration can have grammar as follows:

func_decl := identifier '(' identifier_list ')'
identifier_list := (empty)
 := (identifier)*

9. A function definition is distinguished by a def keyword followed by a function declaration and
an expression that defines its body:

function_defn := 'def' func_decl expression

10. Finally, there will be a top level expression that will yield an expression:

toplevel_expr := expression

An example of the TOY language based on the previously defined grammar can be written as follows:

def foo (x , y)
x +y * 16

Since we have defined the grammar, the next step is to write a lexer and parser for it.

Implementing a lexer
Lexer is a part of the first phase in compiling a program. Lexer tokenizes a stream of input in a
program. Then parser consumes these tokens to construct an AST. The language to tokenize is
generally a context-free language. A token is a string of one or more characters that are significant as
a group. The process of forming tokens from an input stream of characters is called tokenization.
Certain delimiters are used to identify groups of words as tokens. There are lexer tools to automate
lexical analysis, such as LEX. In the TOY lexer demonstrated in the following procedure is a
handwritten lexer using C++.

Getting ready
We must have a basic understanding of the TOY language defined in the recipe. Create a file named
toy.cpp as follows:

$ vim toy.cpp

All the code that follows will contain all the lexer, parser, and code generation logic.

How to do it…
While implementing a lexer, types of tokens are defined to categorize streams of input strings (similar
to states of an automata). This can be done using the enumeration (enum) type:

1. Open the toy.cpp file as follows:

$ vim toy.cpp

2. Write the enum in the toy.cpp file as follows:

enum Token_Type {
EOF_TOKEN = 0,
NUMERIC_TOKEN,
IDENTIFIER_TOKEN,
PARAN_TOKEN,
DEF_TOKEN
};

Following is the term list for the preceding example:
EOF_TOKEN: It states the end of file
NUMERIC_TOKEN: The current token is of numeric type
IDENTIFIER_TOKEN: The current token is identifier
PARAN_TOKEN: The current token is parenthesis
DEF_TOKEN: The current token def states that whatever follows is a function definition

3. To hold numeric values, a static variable is defined in the toy.cpp file as follows:

static int Numeric_Val;

4. To hold the Identifier string name, a static variable can be defined in the toy.cpp file as
follows:

 static std::string Identifier_string;

5. Now the lexer function can be defined by using library functions such as isspace(),
isalpha(), and fgetc() in the toy.cpp file, as shown in the following:

static int get_token() {
 static int LastChar = ' ';

 while(isspace(LastChar))
 LastChar = fgetc(file);

 if(isalpha(LastChar)) {
 Identifier_string = LastChar;
 while(isalnum((LastChar = fgetc(file))))
 Identifier_string += LastChar;

 if(Identifier_string == "def")
 return DEF_TOKEN;
 return IDENTIFIER_TOKEN;
 }

 if(isdigit(LastChar)) {
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = fgetc(file);
 } while(isdigit(LastChar));

 Numeric_Val = strtod(NumStr.c_str(), 0);
 return NUMERIC_TOKEN;
 }

 if(LastChar == '#') {
 do LastChar = fgetc(file);
 while(LastChar != EOF && LastChar != '\n'
 && LastChar != '\r');

 if(LastChar != EOF) return get_token();
 }

 if(LastChar == EOF) return EOF_TOKEN;

 int ThisChar = LastChar;
 LastChar = fgetc(file);
 return ThisChar;
}

How it works…
The example TOY language defined earlier was as follows:

def foo (x , y)
x + y * 16

The lexer will get the preceding program as input. It will come across the def keyword and
determine that whatever follows is a definition token, and hence returns the enum value DEF_TOKEN.
After this, it will come across the function definition and its arguments. Then, there is an expression
that involves two binary operators, two variables, and a numeric constant. How these are stored in
data structures is demonstrated in the following recipes.

See also
See more sophisticated and detailed handwritten lexer for the C++ language is written in Clang,
at http://clang.llvm.org/doxygen/Lexer_8cpp_source.html

http://clang.llvm.org/doxygen/Lexer_8cpp_source.html

Defining Abstract Syntax Tree
AST is a tree representation of the abstract syntactic structure of the source code of a programming
language. The ASTs of programming constructs, such as expressions, flow control statements, and so
on, are grouped into operators and operands. ASTs represent relationships between programming
constructs, and not the ways they are generated by grammar. ASTs ignore unimportant programming
elements such as punctuations and delimiters. ASTs generally contain additional properties of every
element in it, which are useful in further compilation phases. Location of source code is one such
property, which can be used to throw an error line number if an error is encountered in determining
the correctness of the source code in accordance with the grammar (location, line number, column
number, and so on, and other related properties are stored in an object of the SourceManager class in
Clang frontend for C++).

The AST is used intensively during semantic analysis, where the compiler checks for correct usage of
the elements of the program and the language. The compiler also generates symbol tables based on the
AST during semantic analysis. A complete traversal of the tree allows verification of the correctness
of the program. After verifying correctness, the AST serves as the base for code generation.

Getting ready
We must have run the lexer by now to obtain the tokens that will be used in generating the AST. The
languages we intend to parse consist of expressions, function definitions, and function declarations.
Again we have various types of expressions—variables, binary operators, numeric expressions, and
so on.

How to do it…
To define AST structure, proceed with the following steps:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

Below the lexer code, define ASTs.
2. A base class is defined for parsing an expression as follows:

class BaseAST {
 public :
 virtual ~BaseAST();
};

Then, several derived classes are defined for every type of expression to be parsed.
3. An AST class for variable expressions is defined as follows:

class VariableAST : public BaseAST{
 std::string Var_Name;

// string object to store name of
// the variable.
 public:
 VariableAST (std::string &name) : Var_Name(name) {} // ..// parameterized
constructor of variable AST class to be initialized with the string passed
to the constructor.
};

4. The language has some numeric expressions. The AST class for such numeric expressions can be
defined as follows:

class NumericAST : public BaseAST {
 int numeric_val;
 public :
 NumericAST (intval) :numeric_val(val) {}
};

5. For expressions involving binary operation, the AST class can be defined as follows:

Class BinaryAST : public BaseAST {
 std::string Bin_Operator; // string object to store
 // binary operator
 BaseAST *LHS, *RHS; // Objects used to store LHS and
// RHS of a binary Expression. The LHS and RHS binary
// operation can be of any type, hence a BaseAST object
// is used to store them.
 public:
 BinaryAST (std::string op, BaseAST *lhs, BaseAST *rhs) :
 Bin_Operator(op), LHS(lhs), RHS(rhs) {} // Constructor
 //to initialize binary operator, lhs and rhs of the binary
 //expression.
};

6. The AST class for function declaration can be defined as follows:

class FunctionDeclAST {
 std::string Func_Name;
 std::vector<std::string> Arguments;
 public:
 FunctionDeclAST(const std::string &name, const
std::vector<std::string> &args) :
 Func_Name(name), Arguments(args) {};
};

7. The AST class for function definition can be defined as follows:

class FunctionDefnAST {
 FunctionDeclAST *Func_Decl;
 BaseAST* Body;
 public:
 FunctionDefnAST(FunctionDeclAST *proto, BaseAST *body) :
 Func_Decl(proto), Body(body) {}
};

8. The AST class for function call can be defined as follows:

class FunctionCallAST : public BaseAST {
 std::string Function_Callee;
 std::vector<BaseAST*> Function_Arguments;
 public:
 FunctionCallAST(const std::string &callee, std::vector<BaseAST*> &args) :
 Function_Callee(callee), Function_Arguments(args) {}
};

The basic skeleton of the AST is now ready to use.

How it works…
The AST acts as a data structure for storing various information about the tokens given by the lexer.
This information is generated in the parser logic and ASTs are filled up according to the type of token
being parsed.

See also
Having generated the AST, we will implement the parser, and only after that will we see an
example where both lexer and parser will be invoked. For a more detailed AST structure of
C++ in Clang, refer to: http://clang.llvm.org/docs/IntroductionToTheClangAST.html.

http://clang.llvm.org/docs/IntroductionToTheClangAST.html

Implementing a parser
Parser analyzes a code syntactically according to the rules of the language's grammar. The parsing
phase determines if the input code can be used to form a string of tokens according to the defined
grammar. A parse tree is constructed in this phase. Parser defines functions to organize language into
a data structure called AST. The parser defined in this recipe uses a recursive decent parser
technique which is a top-down parser, and uses mutually recursive functions to build the AST.

Getting ready
We must have the custom-defined language, that is the TOY language in this case, and also a stream of
tokens generated by the lexer.

How to do it…
Define some basic value holders in our TOY parser as shown in the following:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

2. Define a global static variable to hold the current token from the lexer as follows:

static int Current_token;

3. Define a function to get the next token from the input stream from the lexer as follows:

static void next_token() {
 Current_token = get_token();
}

4. The next step is to define functions for expression parsing by using the AST data structure
defined in the previous section.

5. Define a generic function to call specific parsing functions according to the types of tokens
determined by the lexer, as shown in the following:

static BaseAST* Base_Parser() {
 switch (Current_token) {
 default: return 0;
 case IDENTIFIER_TOKEN : return identifier_parser();
 case NUMERIC_TOKEN : return numeric_parser();
 case '(' : return paran_parser();
 }
}

How it works…
The stream of input is tokenized and fed to the parser. Current_token holds the token to be
processed. The type of token is known at this stage and the corresponding parser functions are called

to initialize ASTs.

See also
In next few recipes, you will learn how to parse different expressions. For more detailed parsing
of the C++ language implemented in Clang, refer to it works:
http://clang.llvm.org/doxygen/classclang_1_1Parser.html.

http://clang.llvm.org/doxygen/classclang_1_1Parser.html

Parsing simple expressions
In this recipe, you will learn how to parse a simple expression. A simple expression may consist of
numeric values, identifiers, function calls, a function declaration, and function definitions. For each
type of expression, individual parser logic needs to be defined.

Getting ready
We must have the custom-defined language—that is, the TOY language in this case—and also stream
of tokens generated by lexer. We already defined ASTs above. Further, we are going to parse the
expression and invoke AST constructors for every type of expression.

How to do it…
To parse simple expressions, proceed with the following code flow:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

We already have lexer logic present in the toy.cpp file. Whatever code follows needs to be
appended after the lexer code in the toy.cpp file.

2. Define the parser function for numeric expression as follows:

static BaseAST *numeric_parser() {
 BaseAST *Result = new NumericAST(Numeric_Val);
 next_token();
 return Result;
}

3. Define the parser function for an identifier expression. Note that identifier can be a variable
reference or a function call. They are distinguished by checking if the next token is (. This is
implemented as follows:

static BaseAST* identifier_parser() {
 std::string IdName = Identifier_string;

 next_token();

 if(Current_token != '(')
 return new VariableAST(IdName);

 next_token();

 std::vector<BaseAST*> Args;
 if(Current_token != ')') {
 while(1) {
 BaseAST* Arg = expression_parser();
 if(!Arg) return 0;

 Args.push_back(Arg);

 if(Current_token == ')') break;

 if(Current_token != ',')
 return 0;
 next_token();
 }
 }
 next_token();

 return new FunctionCallAST(IdName, Args);
}

4. Define the parser function for the function declaration as follows:

static FunctionDeclAST *func_decl_parser() {
 if(Current_token != IDENTIFIER_TOKEN)
 return 0;

 std::string FnName = Identifier_string;
 next_token();

 if(Current_token != '(')
 return 0;

 std::vector<std::string> Function_Argument_Names;
 while(next_token() == IDENTIFIER_TOKEN)
 Function_Argument_Names.push_back(Identifier_string);
 if(Current_token != ')')
 return 0;

 next_token();

 return new FunctionDeclAST(FnName, Function_Argument_Names);
}

5. Define the parser function for the function definition as follows:

static FunctionDefnAST *func_defn_parser() {
 next_token();
 FunctionDeclAST *Decl = func_decl_parser();
 if(Decl == 0) return 0;

 if(BaseAST* Body = expression_parser())
 return new FunctionDefnAST(Decl, Body);
 return 0;
}

Note that the function called expression_parser used in the preceding code, parses the
expression. The function can be defined as follows:

static BaseAST* expression_parser() {
 BaseAST *LHS = Base_Parser();
 if(!LHS) return 0;

 return binary_op_parser(0, LHS);
}

How it works…
If a numeric token is encountered, the constructor for the numeric expression is invoked and the AST
object for the numeric value is returned by the parser, filling up the AST for numeric values with the
numeric data.

Similarly, for identifier expressions, the parsed data will either be a variable or a function call. For
function declaration and definitions, the name of the function and function arguments is parsed and the
corresponding AST class constructors are invoked.

Parsing binary expressions
In this recipe, you will learn how to parse a binary expression.

Getting ready
We must have the custom-defined language—that is, the toy language in this case—and also stream of
tokens generated by lexer. The binary expression parser requires precedence of binary operators for
determining LHS and RHS in order. An STL map can be used to define precedence of binary
operators.

How to do it…
To parse a binary expression, proceed with the following code flow:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

2. Declare a map for operator precedence to store the precedence at global scope in the toy.cpp
file as follows:

static std::map<char, int>Operator_Precedence;

The TOY language for demonstration has 4 operators where precedence of operators is defined
as -< + < / < *.

3. A function to initialize precedence—that is, to store precedence value in map—can be defined in
global scope in the toy.cpp file as follows:

static void init_precedence() {
 Operator_Precedence['-'] = 1;
 Operator_Precedence['+'] = 2;
 Operator_Precedence['/'] = 3;
 Operator_Precedence['*'] = 4;
}

4. A helper function to return precedence of binary operator can be defined as follows:

static int getBinOpPrecedence() {
 if(!isascii(Current_token))
return -1;

 int TokPrec = Operator_Precedence[Current_token];
 if(TokPrec <= 0) return -1;
 return TokPrec;
}

5. Now, the binary operator parser can be defined as follows:

static BaseAST* binary_op_parser(int Old_Prec, BaseAST *LHS) {

 while(1) {
 int Operator_Prec = getBinOpPrecedence();

 if(Operator_Prec < Old_Prec)
 return LHS;

 int BinOp = Current_token;
 next_token();

 BaseAST* RHS = Base_Parser();
 if(!RHS) return 0;

 int Next_Prec = getBinOpPrecedence();
 if(Operator_Prec < Next_Prec) {
 RHS = binary_op_parser(Operator_Prec+1, RHS);
 if(RHS == 0) return 0;
 }

 LHS = new BinaryAST(std::to_string(BinOp), LHS, RHS);
 }
}

Here, precedence of current operator is checked with the precedence of old operator, and the
outcome is decided according to LHS and RHS of binary operators. Note that the binary
operator parser is recursively called since the RHS can be an expression and not just a single
identifier.

6. A parser function for parenthesis can be defined as follows:

static BaseAST* paran_parser() {
 next_token();
 BaseAST* V = expression_parser();
 if (!V) return 0;

 if(Current_token != ')')
 return 0;
 return V;
}

7. Some top-level functions acting as wrappers around these parser functions can be defined as
follows:

static void HandleDefn() {
 if (FunctionDefnAST *F = func_defn_parser()) {
 if(Function* LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}

static void HandleTopExpression() {
 if(FunctionDefnAST *F = top_level_parser()) {

 if(Function *LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}

See also
All of the remaining recipes in this chapter pertain to user objects. For detailed parsing of
expressions, and for C++ parsing, please refer to:
http://clang.llvm.org/doxygen/classclang_1_1Parser.html.

http://clang.llvm.org/doxygen/classclang_1_1Parser.html

Invoking a driver for parsing
In this recipe, you will learn how to call the parser function from the main function of our TOY
parser.

How to do it…
To invoke a driver program to start parsing, define the driver function as shown in the following:

1. Open the toy.cpp file:

$ vi toy.cpp

2. A Driver function called from the main function, and a parser can now be defined as follows:

static void Driver() {
 while(1) {
 switch(Current_token) {
 case EOF_TOKEN : return;
 case ';' : next_token(); break;
 case DEF_TOKEN : HandleDefn(); break;
 default : HandleTopExpression(); break;
 }
 }
}

3. The main() function to run the whole program can be defined as follows:

int main(int argc, char* argv[]) {
 LLVMContext &Context = getGlobalContext();
 init_precedence();
 file = fopen(argv[1], "r");
 if(file == 0) {
 printf("Could not open file\n");
 }
 next_token();
 Module_Ob = new Module("my compiler", Context);
 Driver();
 Module_Ob->dump();
 return 0;
}

How it works…
The main function is responsible for calling the lexer and parser so that both can act over a piece of
code that is being input to the compiler frontend. From the main function, driver function is invoked to
start the process of parsing.

See also

For details on how the main function and driver function work for c++ parsing in Clang, refer to
http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/driver/cc1_main.cpp

http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/driver/cc1_main.cpp

Running lexer and parser on our TOY
language
Now that a full-fledged lexer and parser for our TOY language grammar are defined, it's time to run it
on example TOY language.

Getting ready
To do this, you should have understanding of TOY language grammar and all the previous recipes of
this chapter.

How to do it…
Run and test the Lexer and Parser on TOY Language, as shown in the following:

1. First step is to compile the toy.cpp program into an executable:

$ clang++ toy.cpp -O3 -o toy

2. The toy executable is our TOY compiler frontend. The toy language to be parsed is in a file
called example:

$ cat example
def foo(x , y)
x + y * 16

3. This file is passed as argument to be processed by the toy compiler:

$./toy example

How it works…
The TOY compiler will open the example file in read mode. Then, it will tokenize the stream of
words. It will come across the def keyword and return DEF_TOKEN. Then, the HandleDefn() function
will be called, which will store the function name and the argument. It will recursively check for the
type of token and then call the specific token handler functions to store them into respective ASTs.

See also
The aforementioned lexer and parser do not handle errors in syntax except a few trivial ones. To
implement Error handling, refer to http://llvm.org/docs/tutorial/LangImpl2.html#parser-basics.

http://llvm.org/docs/tutorial/LangImpl2.html#parser-basics

Defining IR code generation methods for each
AST class
Now, since the AST is ready with all the necessary information in its data structure, the next phase is
to generate LLVM IR. LLVM APIs are used in this code generation. LLVM IR has a predefined format
that is generated by the inbuilt APIs of LLVM.

Getting ready
You must have created the AST from any input code of the TOY language.

How to do it…
In order to generate LLVM IR, a virtual CodeGen function is defined in each AST class (the AST
classes were defined earlier in the AST section; these functions are additional to those classes) as
follows:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

2. In the BaseAST class defined earlier, append the Codegen() functions as follows:

class BaseAST {
 …
 …
 virtual Value* Codegen() = 0;
};
class NumericAST : public BaseAST {
 …
 …
 virtual Value* Codegen();
};
class VariableAST : public BaseAST {
 …
 …
 virtual Value* Codegen();
};

This virtual Codegen() function is included in every AST class we defined.

This function returns an LLVM Value object, which represents Static Single Assignment (SSA)
value in LLVM. A few more static variables are defined that will be used during Codegen.

3. Declare the following static variables in global scope as follows:

static Module *Module_Ob;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value*>Named_Values;

How it works…
The Module_Ob module contains all the functions and variables in the code.

The Builder object helps to generate LLVM IR and keeps track of the current point in the program to
insert LLVM instructions. The Builder object has functions to create new instructions.

The Named_Values map keeps track of all the values defined in the current scope like a symbol table.
For our language, this map will contain function parameters.

Generating IR code for expressions
In this recipe, you will see how IR code gets generated for an expression using the compiler frontend.

How to do it…
To implement LLVM IR code generation for our TOY language, proceed with the following code
flow:

1. Open the toy.cpp file as follows:

$ vi toy.cpp

2. The function to generate code for numeric values can be defined as follows:

Value *NumericAST::Codegen() {
 return ConstantInt::get(Type::getInt32Ty(getGlobalContext()),
numeric_val);
}

In LLVM IR, integer constants are represented by the ConstantInt class whose numeric value
is held by the APInt class.

3. The function for generating code for variable expressions can be defined as follows:

Value *VariableAST::Codegen() {
 Value *V = Named_Values[Var_Name];
 return V ? V : 0;
}

4. The Codegen() function for binary expression can be defined as follows:

Value *BinaryAST::Codegen() {
 Value *L = LHS->Codegen();
 Value *R = RHS->Codegen();
 if(L == 0 || R == 0) return 0;

 switch(atoi(Bin_Operator.c_str())) {
 case '+' : return Builder.CreateAdd(L, R, "addtmp");
 case '-' : return Builder.CreateSub(L, R, "subtmp");
 case '*' : return Builder.CreateMul(L, R, "multmp");
 case '/' : return Builder.CreateUDiv(L, R, "divtmp");
 default : return 0;
 }
}

If the code above emits multiple addtmp variables, LLVM will automatically provide each one
with an increasing, unique numeric suffix.

See also
The next recipe shows how to generate IR code for function; we will learn how the code

generation actually works.

Generating IR code for functions
In this recipe you, will learn how to generate IR code for a function.

How to do it…
Do the following steps:

1. The Codegen() function for the function call can be defined as follows:

Value *FunctionCallAST::Codegen() {
 Function *CalleeF =
 Module_Ob->getFunction(Function_Callee);
 std::vector<Value*>ArgsV;
 for(unsigned i = 0, e = Function_Arguments.size();
 i != e; ++i) {
 ArgsV.push_back(Function_Arguments[i]->Codegen());
 if(ArgsV.back() == 0) return 0;
 }
 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Once we have the function to call, we recursively call the Codegen() function for each argument
that is to be passed in and create an LLVM call instruction.

2. Now that the Codegen() function for a function call has been defined, it's time to define the
Codegen() functions for declarations and function definitions.

The Codegen() function for function declarations can be defined as follows:

Function *FunctionDeclAST::Codegen() {
 std::vector<Type*>Integers(Arguments.size(),
Type::getInt32Ty(getGlobalContext()));
 FunctionType *FT = FunctionType::get(Type::getInt32Ty(getGlobalContext()),
Integers, false);
 Function *F = Function::Create(FT, Function::ExternalLinkage, Func_Name,
Module_Ob);

 if(F->getName() != Func_Name) {
 F->eraseFromParent();
 F = Module_Ob->getFunction(Func_Name);

 if(!F->empty()) return 0;

 if(F->arg_size() != Arguments.size()) return 0;

 }

 unsigned Idx = 0;
 for(Function::arg_iterator Arg_It = F->arg_begin(); Idx !=
Arguments.size(); ++Arg_It, ++Idx) {
 Arg_It->setName(Arguments[Idx]);

 Named_Values[Arguments[Idx]] = Arg_It;
 }

 return F;
}

The Codegen() function for function definition can be defined as follows:

Function *FunctionDefnAST::Codegen() {
 Named_Values.clear();

 Function *TheFunction = Func_Decl->Codegen();
 if(TheFunction == 0) return 0;

 BasicBlock *BB = BasicBlock::Create(getGlobalContext(),"entry",
TheFunction);
 Builder.SetInsertPoint(BB);

 if(Value *RetVal = Body->Codegen()) {
 Builder.CreateRet(RetVal);
 verifyFunction(*TheFunction);
 return TheFunction;
 }

 TheFunction->eraseFromParent();
 return 0;
}

3. That's it! LLVMIR is now ready. These Codegen() functions can be called in the wrappers
written to parse top-level expressions as follows:

static void HandleDefn() {
 if (FunctionDefnAST *F = func_defn_parser()) {
 if(Function* LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}
static void HandleTopExpression() {
 if(FunctionDefnAST *F = top_level_parser()) {
 if(Function *LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}

So, after parsing successfully, the respective Codegen() functions are called to generate the
LLVM IR. The dump() function is called to print the generated IR.

How it works…
The Codegen() functions use LLVM inbuilt function calls to generate IR. The header files to include
for this purpose are llvm/IR/Verifier.h, llvm/IR/DerivedTypes.h, llvm/IR/IRBuilder.h,
and llvm/IR/LLVMContext.h, llvm/IR/Module.h.

1. While compiling, this code needs to be linked with LLVM libraries. For this purpose, the llvm-
config tool can be used as follows:

llvm-config --cxxflags --ldflags --system-libs --libs core.

2. For this purpose, the toy program is recompiled with additional flags as follows:

$ clang++ -O3 toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs
core` -o toy

3. When the toy compiler is now run on example code, it will generate LLVM IR as follows:

$./toy example

define i32 @foo (i32 %x, i32 %y) {
 entry:
 %multmp = muli32 %y, 16
 %addtmp = add i32 %x, %multmp
 reti32 %addtmp
}

Another example2 file has a function call.$ cat example2:

foo(5, 6);

Its LLVM IR will be dumped as follows:

$./toy example2
define i32 @1 () {
 entry:
 %calltmp = call i32@foo(i32 5, i32 6)
 reti32 %calltmp
}

See also
For details on how Codegen() functions for C++ in Clang, refer to http://llvm.org/viewvc/llvm-
project/cfe/trunk/lib/CodeGen/

http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/

Adding IR optimization support
LLVM provides a wide variety of optimization passes. LLVM allows a compiler implementation to
decide which optimizations to use, their order, and so on. In this recipe, you will learn how to add IR
optimization support.

How to do it…
Do the following steps:

1. To start with the addition of IR optimization support, first of all a static variable for function
manager has to be defined as follows:

static FunctionPassManager *Global_FP;

2. Then, a function pass manager needs to be defined for the Module object used previously. This
can be done in the main() function as follows:

FunctionPassManager My_FP(TheModule);

3. Now a pipeline of various optimizer passes can be added in the main() function as follows:

My_FP.add(createBasicAliasAnalysisPass());
My_FP.add(createInstructionCombiningPass());
My_FP.add(createReassociatePass());
My_FP.add(createGVNPass());
My_FP.doInitialization();

4. Now the static global function Pass Manager is assigned to this pipeline as follows:

Global_FP = &My_FP;
Driver();

This PassManager has a run method, which we can run on the function IR generated before
returning from Codegen() of the function definition. This is demonstrated as follows:

Function* FunctionDefnAST::Codegen() {
 Named_Values.clear();
 Function *TheFunction = Func_Decl->Codegen();
 if (!TheFunction) return 0;
 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
TheFunction);
 Builder.SetInsertPoint(BB);
 if (Value* Return_Value = Body->Codegen()) {
 Builder.CreateRet(Return_Value);
 verifyFunction(*TheFunction);
 Global_FP->run(*TheFunction);
 returnTheFunction;
 }
 TheFunction->eraseFromParent();
 return 0;
}

This is a lot more beneficial as it optimizes the function in place, improving the code generated for
the function body.

See also
How to add our own optimization pass and its run method will be demonstrated in the later
chapters

Chapter 3. Extending the Frontend and Adding
JIT Support
In this chapter, we will cover the following recipes:

Handling decision making paradigms – if/then/else constructs
Generating code for loops
Handling user-defined operators – binary operators
Handling user-defined operators – unary operators
Adding JIT support

Introduction
In the last chapter, the basics of the frontend component for a language were defined. This included
defining tokens for different types of expressions, writing a lexer to tokenize a stream of input,
chalking out a skeleton for the abstract syntax tree of various expressions, writing a parser, and
generating code for the language. Also, how various optimizations can be hooked to the frontend was
explained.

A language is more powerful and expressive when it has control flow and loops to decide the flow of
a program. JIT support explores the possibility of compiling code on-the-fly. In this chapter,
implementation of these more sophisticated programming paradigms will be discussed. This chapter
deals with enhancements of a programming language that make it more meaningful and powerful to
use. The recipes in this chapter demonstrate how to include those enhancements for a given language.

Handling decision making paradigms –
if/then/else constructs
In any programming language, executing a statement based on certain conditions gives a very
powerful advantage to the language. The if/then/else constructs provide the capability to alter the
control flow of a program, based on certain conditions. The condition is present in an if construct. If
the condition is true, the expression following the then construct is executed. If it is false, the
expression following the else construct is executed. This recipe demonstrates a basic infrastructure
to parse and generate code for the if/then/else construct.

Getting ready
The TOY language for if/then/else can be defined as:

if x < 2 then
x + y
else
x - y

For checking a condition, a comparison operator is required. A simple less than operator, <, will
serve the purpose. To handle <, precedence needs to be defined in the init_precedence() function,
as shown here:

static void init_precedence() {
 Operator_Precedence['<'] = 0;
 …
 …
}

Also, the codegen() function for binary expressions needs to be included for <:

Value* BinaryAST::Codegen() {
…
…
…
case '<' :
L = Builder.CreateICmpULT(L, R, "cmptmp");
return Builder.CreateZExt(L, Type::getInt32Ty(getGlobalContext()),
 "booltmp");…
…
}

Now, the LLVM IR will generate a comparison instruction and a Boolean instruction as a result of the
comparison, which will be used to determine where the control of the program will flow. It's time to
handle the if/then/else paradigm now.

How to do it...

Do the following steps:

1. The lexer in the toy.cpp file has to be extended to handle the if/then/else constructs. This can
be done by appending a token for this in the enum of tokens:

enum Token_Type{
…
…
IF_TOKEN,
THEN_TOKEN,
ELSE_TOKEN
}

2. The next step is to append the entries for these tokens in the get_token() function, where we
match strings and return the appropriate tokens:

static int get_token() {
…
…
…
if (Identifier_string == "def") return DEF_TOKEN;
if(Identifier_string == "if") return IF_TOKEN;
if(Identifier_string == "then") return THEN_TOKEN;
if(Identifier_string == "else") return ELSE_TOKEN;
…
…
}

3. Then we define an AST node in the toy.cpp file:

class ExprIfAST : public BaseAST {
 BaseAST *Cond, *Then, *Else;

public:
 ExprIfAST(BaseAST *cond, BaseAST *then, BaseAST * else_st)
 : Cond(cond), Then(then), Else(else_st) {}
 Value *Codegen() override;
};

4. The next step is to define the parsing logic for the if/then/else constructs:

static BaseAST *If_parser() {
 next_token();

 BaseAST *Cond = expression_parser();
 if (!Cond)
 return 0;

 if (Current_token != THEN_TOKEN)
 return 0;
 next_token();

 BaseAST *Then = expression_parser();
 if (Then == 0)
 return 0;

 if (Current_token != ELSE_TOKEN)
 return 0;

 next_token();

 BaseAST *Else = expression_parser();
 if (!Else)
 return 0;

 return new ExprIfAST(Cond, Then, Else);
}

The parser logic is simple: first, the if token is searched for and the expression following it is
parsed for the condition. After that, the then token is identified and the true condition expression
is parsed. Then the else token is searched for and the false condition expression is parsed.

5. Next we hook up the previously defined function with Base_Parser():

static BaseAST* Base_Parser() {
switch(Current_token) {
…
…
…
case IF_TOKEN : return If_parser();
…
}

6. Now that the AST of if/then/else is filled with the expression by the parser, it's time to
generate the LLVM IR for the conditional paradigm. Let's define the Codegen() function:

Value *ExprIfAST::Codegen() {
 Value *Condtn = Cond->Codegen();
 if (Condtn == 0)
 return 0;

 Condtn = Builder.CreateICmpNE(
 Condtn, Builder.getInt32(0), "ifcond");

 Function *TheFunc = Builder.GetInsertBlock()->getParent();

 BasicBlock *ThenBB =
 BasicBlock::Create(getGlobalContext(), "then", TheFunc);
 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");

 Builder.CreateCondBr(Condtn, ThenBB, ElseBB);

 Builder.SetInsertPoint(ThenBB);

 Value *ThenVal = Then->Codegen();
 if (ThenVal == 0)
 return 0;

 Builder.CreateBr(MergeBB);

 ThenBB = Builder.GetInsertBlock();

 TheFunc->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseVal = Else->Codegen();
 if (ElseVal == 0)
 return 0;

 Builder.CreateBr(MergeBB);
 ElseBB = Builder.GetInsertBlock();

 TheFunc->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *Phi = Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()), 2,
"iftmp");

 Phi->addIncoming(ThenVal, ThenBB);
 Phi->addIncoming(ElseVal, ElseBB);
 return Phi;
}

Now that we are ready with the code, let's compile and run it on a sample program containing the
if/then/else constructs.

How it works…
Do the following steps:

1. Compile the toy.cpp file:

$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core
` -O3 -o toy

2. Open an example file:

$ vi example

3. Write the following if/then/else code in the example file:

def fib(x)
 if x < 3 then
 1
 Else
 fib(x-1)+fib(x-2);

4. Compile the example file with the TOY compiler:

$./toy example

The LLVM IR generated for the if/then/else code will look like this:

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @fib(i32 %x) {
entry:
 %cmptmp = icmp ult i32 %x, 3
 br i1 %cmptmp, label %ifcont, label %else

else: ; preds = %entry
 %subtmp = add i32 %x, -1
 %calltmp = call i32 @fib(i32 %subtmp)
 %subtmp1 = add i32 %x, -2
 %calltmp2 = call i32 @fib(i32 %subtmp1)
 %addtmp = add i32 %calltmp2, %calltmp
 br label %ifcont

ifcont: ; preds = %entry, %else
 %iftmp = phi i32 [%addtmp, %else], [1, %entry]
 ret i32 %iftmp
}

Here's what the output looks like:

The parser identifies the if/then/else constructs and the statements that are to be executed in true
and false conditions, and stores them in the AST. The code generator then converts the AST into
LLVM IR, where the condition statement is generated. IR is generated for true as well as false
conditions. Depending on the state of the condition variable, the appropriate statement is executed at
runtime.

See also
For a detailed example on how an if else statement is handled in C++ by Clang, refer to
http://clang.llvm.org/doxygen/classclang_1_1IfStmt.html.

http://clang.llvm.org/doxygen/classclang_1_1IfStmt.html

Generating code for loops
Loops make a language powerful enough to perform the same operation several times, with limited
lines of code. Loops are present in almost every language. This recipe demonstrates how loops are
handled in the TOY language.

Getting ready
A loop typically has a start that initializes the induction variable, a step that indicates an increment or
decrement in the induction variable, and an end condition for termination of the loop. The loop in our
TOY language can be defined as follows:

for i = 1, i < n, 1 in
 x + y;

The start expression is the initialization of i = 1. The end condition for the loop is i<n. The first line
of the code indicates i be incremented by 1.

As long as the end condition is true, the loop iterates and, after each iteration, the induction variable,
i, is incremented by 1. An interesting thing called PHI node comes into the picture to decide which
value the induction variable, i, will take. Remember that our IR is in the single static assignment
(SSA) form. In a control flow graph, for a given variable, the values can come from two different
blocks. To represent SSA in LLVM IR, the phi instruction is defined. Here is an example of phi:

%i = phi i32 [1, %entry], [%nextvar, %loop]

The preceding IR indicates that the value for i can come from two basic blocks: %entry and %loop.
The value from the %entry block will be 1, while the %nextvar variable will be from %loop. We
will see the details after implementing the loop for our toy compiler.

How to do it...
Like any other expression, loops are also handled by including states in lexer, defining the AST data
structure to hold loop values, and defining the parser and the Codegen() function to generate the
LLVM IR:

1. The first step is to define tokens in the lexer in toy.cpp file:

enum Token_Type {
 …
 …
 FOR_TOKEN,
 IN_TOKEN
 …
 …
};

2. Then we include the logic in the lexer:

static int get_token() {
 …
 …
if (Identifier_string == "else")
 return ELSE_TOKEN;
 if (Identifier_string == "for")
 return FOR_TOKEN;
 if (Identifier_string == "in")
 return IN_TOKEN;
 …
 …
}

3. The next step is to define the AST for the for loop:

class ExprForAST : public BaseAST {
 std::string Var_Name;
 BaseAST *Start, *End, *Step, *Body;

public:
 ExprForAST (const std::string &varname, BaseAST *start, BaseAST *end,
 BaseAST *step, BaseAST *body)
 : Var_Name(varname), Start(start), End(end), Step(step), Body(body) {}
 Value *Codegen() override;
};

4. Then we define the parser logic for the loop:

static BaseAST *For_parser() {
 next_token();

 if (Current_token != IDENTIFIER_TOKEN)
 return 0;

 std::string IdName = Identifier_string;
 next_token();

 if (Current_token != '=')
 return 0;
 next_token();

 BaseAST *Start = expression_parser();
 if (Start == 0)
 return 0;
 if (Current_token != ',')
 return 0;
 next_token();

 BaseAST *End = expression_parser();
 if (End == 0)
 return 0;

 BaseAST *Step = 0;

 if (Current_token == ',') {
 next_token();
 Step = expression_parser();
 if (Step == 0)
 return 0;
 }

 if (Current_token != IN_TOKEN)
 return 0;
 next_token();

 BaseAST *Body = expression_parser();
 if (Body == 0)
 return 0;

 return new ExprForAST (IdName, Start, End, Step, Body);
}

5. Next we define the Codegen() function to generate the LLVM IR:

Value *ExprForAST::Codegen() {

 Value *StartVal = Start->Codegen();
 if (StartVal == 0)
 return 0;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();
 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 BasicBlock *LoopBB =
 BasicBlock::Create(getGlobalContext(), "loop", TheFunction);

 Builder.CreateBr(LoopBB);

 Builder.SetInsertPoint(LoopBB);

 PHINode *Variable =
Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()), 2,
Var_Name.c_str());
 Variable->addIncoming(StartVal, PreheaderBB);

 Value *OldVal = Named_Values[Var_Name];
 Named_Values[Var_Name] = Variable;

 if (Body->Codegen() == 0)
 return 0;

 Value *StepVal;
 if (Step) {
 StepVal = Step->Codegen();
 if (StepVal == 0)
 return 0;
 } else {
 StepVal = ConstantInt::get(Type::getInt32Ty(getGlobalContext()), 1);
 }

 Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");

 Value *EndCond = End->Codegen();
 if (EndCond == 0)
 return EndCond;

 EndCond = Builder.CreateICmpNE(
 EndCond, ConstantInt::get(Type::getInt32Ty(getGlobalContext()), 0),
"loopcond");

 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 BasicBlock *AfterBB =
 BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);

 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 Builder.SetInsertPoint(AfterBB);

 Variable->addIncoming(NextVar, LoopEndBB);

 if (OldVal)
 Named_Values[Var_Name] = OldVal;
 else
 Named_Values.erase(Var_Name);

 return Constant::getNullValue(Type::getInt32Ty(getGlobalContext()));
}

How it works...
Do the following steps:

1. Compile the toy.cpp file:

$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core
` -O3 -o toy

2. Open an example file:

$ vi example

3. Write the following code for a for loop in the example file:

def printstar(n x)
 for i = 1, i < n, 1.0 in
 x + 1

4. Compile the example file with the TOY compiler:

$./toy example

5. The LLVM IR for the preceding for loop code will be generated, as follows:

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @printstar(i32 %n, i32 %x) {
entry:
 br label %loop

loop: ; preds = %loop, %entry
 %i = phi i32 [1, %entry], [%nextvar, %loop]
 %nextvar = add i32 %i, 1
 %cmptmp = icmp ult i32 %i, %n
 br i1 %cmptmp, label %loop, label %afterloop

afterloop: ; preds = %loop
 ret i32 0
}

The parser you just saw identifies the loop, initialization of the induction variable, the termination
condition, the step value for the induction variable, and the body of the loop. It then converts each of
the blocks in LLVM IR, as seen previously.

As seen previously, a phi instruction gets two values for the variable i from two basic blocks:
%entry and %loop. In the preceding case, the %entry block represents the value assigned to the
induction variable at the start of the loop (this is 1). The next updated value of i comes from the
%loop block, which completes one iteration of the loop.

See also
To get a detailed overview of how loops are handled for C++ in Clang, visit
http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/ParseExprCXX.cpp

http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/ParseExprCXX.cpp

Handling user-defined operators – binary
operators
User-defined operators are similar to the C++ concept of operator overloading, where a default
definition of an operator is altered to operate on a wide variety of objects. Typically, operators are
unary or binary operators. Implementing binary operator overloading is easier with the existing
infrastructure. Unary operators need some additional code to handle. First, binary operator
overloading will be defined, and then unary operator overloading will be looked into.

Getting ready
The first part is to define a binary operator for overloading. The logical OR operator (|) is a good
example to start with. The | operator in our TOY language can be used as follows:

def binary | (LHS RHS)
if LHS then
1
else if RHS then
1
else
0;

As seen in the preceding code, if any of the values of the LHS or RHS are not equal to 0, then we
return 1. If both the LHS and RHS are null, then we return 0.

How to do it...
Do the following steps:

1. The first step, as usual, is to append the enum states for the binary operator and return the enum
states on encountering the binary keyword:

 enum Token_Type {
…
…
BINARY_TOKEN
}
static int get_token() {
…
…
if (Identifier_string == "in") return IN_TOKEN;
if (Identifier_string == "binary") return BINARY_TOKEN;
…
…
}

2. The next step is to add an AST for the same. Note that it doesn't need a new AST to be defined.
It can be handled with the function declaration AST. We just need to modify it by adding a flag to

represent whether it's a binary operator. If it is, then determine its precedence:

class FunctionDeclAST {
 std::string Func_Name;
 std::vector<std::string> Arguments;
 bool isOperator;
 unsigned Precedence;
public:
 FunctionDeclAST(const std::string &name, const std::vector<std::string>
&args,
 bool isoperator = false, unsigned prec = 0)
 : Func_Name(name), Arguments(args), isOperator(isoperator),
Precedence(prec) {}

 bool isUnaryOp() const { return isOperator && Arguments.size() == 1; }
 bool isBinaryOp() const { return isOperator && Arguments.size() == 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Func_Name[Func_Name.size() - 1];
 }

 unsigned getBinaryPrecedence() const { return Precedence; }

 Function *Codegen();
};

3. Once the modified AST is ready, the next step is to modify the parser of the function declaration:

static FunctionDeclAST *func_decl_parser() {
 std::string FnName;

 unsigned Kind = 0;
 unsigned BinaryPrecedence = 30;

 switch (Current_token) {
 default:
 return 0;
 case IDENTIFIER_TOKEN:
 FnName = Identifier_string;
 Kind = 0;
 next_token();
 break;
 case UNARY_TOKEN:
 next_token();
 if (!isascii(Current_token))
 return 0;
 FnName = "unary";
 FnName += (char)Current_token;
 Kind = 1;
 next_token();
 break;
 case BINARY_TOKEN:
 next_token();
 if (!isascii(Current_token))

 return 0;
 FnName = "binary";
 FnName += (char)Current_token;
 Kind = 2;
 next_token();

 if (Current_token == NUMERIC_TOKEN) {
 if (Numeric_Val < 1 || Numeric_Val > 100)
 return 0;
 BinaryPrecedence = (unsigned)Numeric_Val;
 next_token();
 }
 break;
 }

 if (Current_token != '(')
 return 0;

 std::vector<std::string> Function_Argument_Names;
 while (next_token() == IDENTIFIER_TOKEN)
 Function_Argument_Names.push_back(Identifier_string);
 if (Current_token != ')')
 return 0;

 next_token();

 if (Kind && Function_Argument_Names.size() != Kind)
 return 0;

 return new FunctionDeclAST(FnName, Function_Argument_Names, Kind != 0,
BinaryPrecedence);
}

4. Then we modify the Codegen() function for the binary AST:

Value* BinaryAST::Codegen() {
 Value* L = LHS->Codegen();
Value* R = RHS->Codegen();
switch(Bin_Operator) {
case '+' : return Builder.CreateAdd(L, R, "addtmp");
case '-' : return Builder.CreateSub(L, R, "subtmp");
case '*': return Builder.CreateMul(L, R, "multmp");
case '/': return Builder.CreateUDiv(L, R, "divtmp");
case '<' :
L = Builder.CreateICmpULT(L, R, "cmptmp");
return Builder.CreateUIToFP(L, Type::getIntTy(getGlobalContext()),
"booltmp");
default :
break;
}
Function *F = TheModule->getFunction(std::string("binary")+Op);
 Value *Ops[2] = { L, R };
 return Builder.CreateCall(F, Ops, "binop");
}

5. Next we modify the function definition; it can be defined as:

Function* FunctionDefnAST::Codegen() {
Named_Values.clear();
Function *TheFunction = Func_Decl->Codegen();
if (!TheFunction) return 0;
if (Func_Decl->isBinaryOp())
 Operator_Precedence [Func_Decl->getOperatorName()] = Func_Decl-
>getBinaryPrecedence();
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
TheFunction);
Builder.SetInsertPoint(BB);
if (Value* Return_Value = Body->Codegen()) {
 Builder.CreateRet(Return_Value);
…
…

How it works...
Do the following steps:

1. Compile the toy.cpp file:

$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core
` -O3 -o toy

2. Open an example file:

$ vi example

3. Write the following binary operator overloading code in the example file:

def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

4. Compile the example file with the TOY compiler:

$./toy example

output :

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @"binary|"(i32 %LHS, i32 %RHS) {
entry:
 %ifcond = icmp eq i32 %LHS, 0
 %ifcond1 = icmp eq i32 %RHS, 0
 %. = select i1 %ifcond1, i32 0, i32 1

 %iftmp5 = select i1 %ifcond, i32 %., i32 1
 ret i32 %iftmp5
}

The binary operator we just defined will be parsed. Its definition is also parsed. Whenever the |
binary operator is encountered, the LHS and RHS are initialized and the definition body is executed,
giving the appropriate result as per the definition. In the preceding example, if either the LHS or RHS
is nonzero, then the result is 1. If both the LHS and RHS are zero, then the result is 0.

See also
For detailed examples on handling other binary operators, refer to
http://llvm.org/docs/tutorial/LangImpl6.html

http://llvm.org/docs/tutorial/LangImpl6.html

Handling user-defined operators – unary
operators
We saw in the previous recipe how binary operators can be handled. A language may also have some
unary operator, operating on 1 operand. In this recipe, we will see how to handle unary operators.

Getting ready
The first step is to define a unary operator in the TOY language. A simple unary NOT operator (!)
can serve as a good example; let's see one definition:

def unary!(v)
 if v then
 0
 else
 1;

If the value v is equal to 1, then 0 is returned. If the value is 0, 1 is returned as the output.

How to do it...
Do the following steps:

1. The first step is to define the enum token for the unary operator in the toy.cpp file:

enum Token_Type {
…
…
BINARY_TOKEN,
UNARY_TOKEN
}

2. Then we identify the unary string and return a unary token:

static int get_token() {
…
…
if (Identifier_string == "in") return IN_TOKEN;
if (Identifier_string == "binary") return BINARY_TOKEN;
if (Identifier_string == "unary") return UNARY_TOKEN;

…
…
}

3. Next, we define an AST for the unary operator:

class ExprUnaryAST : public BaseAST {
 char Opcode;
 BaseAST *Operand;

public:
 ExprUnaryAST(char opcode, BaseAST *operand)
 : Opcode(opcode), Operand(operand) {}
 virtual Value *Codegen();
};

4. The AST is now ready. Let's define a parser for the unary operator:

static BaseAST *unary_parser() {

 if (!isascii(Current_token) || Current_token == '(' || Current_token ==
',')
 return Base_Parser();

 int Op = Current_token;

 next_token();

 if (ExprAST *Operand = unary_parser())
 return new ExprUnaryAST(Opc, Operand);

return 0;
}

5. The next step is to call the unary_parser() function from the binary operator parser:

static BaseAST *binary_op_parser(int Old_Prec, BaseAST *LHS) {

 while (1) {
 int Operator_Prec = getBinOpPrecedence();

 if (Operator_Prec < Old_Prec)
 return LHS;

 int BinOp = Current_token;
 next_token();

 BaseAST *RHS = unary_parser();
 if (!RHS)
 return 0;

 int Next_Prec = getBinOpPrecedence();
 if (Operator_Prec < Next_Prec) {
 RHS = binary_op_parser(Operator_Prec + 1, RHS);
 if (RHS == 0)
 return 0;
 }

 LHS = new BinaryAST(std::to_string(BinOp), LHS, RHS);
 }
}

6. Now let's call the unary_parser() function from the expression parser:

static BaseAST *expression_parser() {
 BaseAST *LHS = unary_parser();

 if (!LHS)
 return 0;

 return binary_op_parser(0, LHS);
}

7. Then we modify the function declaration parser:

static FunctionDeclAST* func_decl_parser() {
std::string Function_Name = Identifier_string;
unsigned Kind = 0;
unsigned BinaryPrecedence = 30;
switch (Current_token) {
 default:
 return 0;
 case IDENTIFIER_TOKEN:
 Function_Name = Identifier_string;
 Kind = 0;
 next_token();
 break;
 case UNARY_TOKEN:
 next_token();
if (!isascii(Current_token))
 return0;
 Function_Name = "unary";
 Function_Name += (char)Current_token;
 Kind = 1;
 next_token();
 break;
 case BINARY_TOKEN:
 next_token();
 if (!isascii(Current_token))
 return 0;
 Function_Name = "binary";
 Function_Name += (char)Current_token;
 Kind = 2;
 next_token();
 if (Current_token == NUMERIC_TOKEN) {
 if (Numeric_Val < 1 || Numeric_Val > 100)
 return 0;
 BinaryPrecedence = (unsigned)Numeric_Val;
 next_token();
 }
 break;
 }
if (Current_token ! = '(') {
printf("error in function declaration");
return 0;
}
std::vector<std::string> Function_Argument_Names;
while(next_token() == IDENTIFIER_TOKEN)
Function_Argument_Names.push_back(Identifier_string);
if(Current_token != ')') { printf("Expected ')' ");
return 0;
}

next_token();
if (Kind && Function_Argument_Names.size() != Kind)
 return 0;
return new FunctionDeclAST(Function_Name, Function_Arguments_Names, Kind
!=0, BinaryPrecedence);
}

8. The final step is to define the Codegen() function for the unary operator:

Value *ExprUnaryAST::Codegen() {

 Value *OperandV = Operand->Codegen();

 if (OperandV == 0) return 0;

 Function *F = TheModule->getFunction(std::string("unary")+Opcode);

 if (F == 0)
 return 0;

 return Builder.CreateCall(F, OperandV, "unop");
}

How it works...
Do the following steps:

1. Compile the toy.cpp file:

$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core
` -O3 -o toy

2. Open an example file:

$ vi example

3. Write the following unary operator overloading code in the example file:

def unary!(v)
 if v then
 0
 else
 1;

4. Compile the example file with the TOY compiler:

$./toy example

The output should be as shown:

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @"unary!"(i32 %v) {

entry:
 %ifcond = icmp eq i32 %v, 0
 %. = select i1 %ifcond, i32 1, i32 0
 ret i32 %.
}

The unary operator defined by the user will be parsed, and IR will be generated for it. In the case you
just saw, if the unary operand is not zero then the result is 0. If the operand is zero, then the result is 1.

See also
To learn more detailed implementations of unary operators, visit
http://llvm.org/docs/tutorial/LangImpl6.html

http://llvm.org/docs/tutorial/LangImpl6.html

Adding JIT support
A wide variety of tools can be applied to LLVM IR. For example, as demonstrated in Chapter 1,
LLVM Design and Use, the IR can be dumped into bitcode or into an assembly. An optimization tool
called opt can be run on IR. IR acts as the common platform—an abstract layer for all of these tools.

JIT support can also be added. It immediately evaluates the top-level expressions typed in. For
example, 1 + 2;, as soon as it is typed in, evaluates the code and prints the value as 3.

How to do it...
Do the following steps:

1. Define a static global variable for the execution engine in the toy.cpp file:

static ExecutionEngine *TheExecutionEngine;

2. In the toy.cpp file's main() function, write the code for JIT:

int main() {
…
…
init_precedence();
TheExecutionEngine = EngineBuilder(TheModule).create();
…
…
}

3. Modify the top-level expression parser in the toy.cpp file:

static void HandleTopExpression() {

if (FunctionDefAST *F = expression_parser())
 if (Function *LF = F->Codegen()) {
 LF -> dump();
 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 int (*Int)() = (int (*)())(intptr_t)FPtr;

 printf("Evaluated to %d\n", Int());
}
 else
next_token();
}

How it works…
Do the following steps:

1. Compile the toy.cpp program:

$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core

mcjit native` -O3 -o toy

2. Open an example file:

$ vi example

3. Write the following TOY code in the example file:

…
4+5;

4. Finally, run the TOY compiler on the example file:

$./toy example
The output will be
define i32 @0() {
entry:
 ret i32 9
}

The LLVM JIT compiler matches the native platform ABI, casts the result pointer into a function
pointer of that type, and calls it directly. There is no difference between JIT-compiled code and
native machine code that is statically linked to the application.

Chapter 4. Preparing Optimizations
In this chapter, we will cover the following recipes:

Various levels of optimization
Writing your own LLVM pass
Running your own pass with the opt tool
Using another pass in a new pass
Registering a pass with pass manager
Writing an analysis pass
Writing an alias analysis pass
Using other analysis passes

Introduction
Once the source code transformation completes, the output is in the LLVM IR form. This IR serves as
a common platform for converting into assembly code, depending on the backend. However, before
converting into an assembly code, the IR can be optimized to produce more effective code. The IR is
in the SSA form, where every new assignment to a variable is a new variable itself—a classic case
of an SSA representation.

In the LLVM infrastructure, a pass serves the purpose of optimizing LLVM IR. A pass runs over the
LLVM IR, processes the IR, analyzes it, identifies the optimization opportunities, and modifies the IR
to produce optimized code. The command-line interface opt is used to run optimization passes on
LLVM IR.

In the upcoming chapters, various optimization techniques will be discussed. Also, how to write and
register a new optimization pass will be explored.

Various levels of optimization
There are various levels of optimization, starting at 0 and going up to 3 (there is also s for space
optimization). The code gets more and more optimized as the optimization level increases. Let's try to
explore the various optimization levels.

Getting ready...
Various optimization levels can be understood by running the opt command-line interface on LLVM
IR. For this, an example C program can first be converted to IR using the Clang frontend.

1. Open an example.c file and write the following code in it:

$ vi example.c
int main(int argc, char **argv) {
 int i, j, k, t = 0;
 for(i = 0; i < 10; i++) {
 for(j = 0; j < 10; j++) {
 for(k = 0; k < 10; k++) {
 t++;
 }
 }
 for(j = 0; j < 10; j++) {
 t++;
 }
 }
 for(i = 0; i < 20; i++) {
 for(j = 0; j < 20; j++) {
 t++;
 }
 for(j = 0; j < 20; j++) {
 t++;
 }
 }
 return t;
}

2. Now convert this into LLVM IR using the clang command, as shown here:

$ clang –S –O0 –emit-llvm example.c

A new file, example.ll, will be generated, containing LLVM IR. This file will be used to
demonstrate the various optimization levels available.

How to do it…
Do the following steps:

1. The opt command-line tool can be run on the IR-generated example.ll file:

$ opt –O0 –S example.ll

The –O0 syntax specifies the least optimization level.
2. Similarly, you can run other optimization levels:

$ opt –O1 –S example.ll
$ opt –O2 –S example.ll
$ opt –O3 –S example.ll

How it works…
The opt command-line interface takes the example.ll file as the input and runs the series of passes
specified in each optimization level. It can repeat some passes in the same optimization level. To see
which passes are being used in each optimization level, you have to add the --debug-
pass=Structure command-line option with the previous opt commands.

See Also
To know more on various other options that can be used with the opt tool, refer to
http://llvm.org/docs/CommandGuide/opt.html

http://llvm.org/docs/CommandGuide/opt.html

Writing your own LLVM pass
All LLVM passes are subclasses of the pass class, and they implement functionality by overriding the
virtual methods inherited from pass. LLVM applies a chain of analyses and transformations on the
target program. A pass is an instance of the Pass LLVM class.

Getting ready
Let's see how to write a pass. Let's name the pass function block counter; once done, it will
simply display the name of the function and count the basic blocks in that function when run. First, a
Makefile needs to be written for the pass. Follow the given steps to write a Makefile:

1. Open a Makefile in the llvm lib/Transform folder:

$ vi Makefile

2. Specify the path to the LLVM root folder and the library name, and make this pass a loadable
module by specifying it in Makefile, as follows:

LEVEL = ../../..
LIBRARYNAME = FuncBlockCount
LOADABLE_MODULE = 1
include $(LEVEL)/Makefile.common

This Makefile specifies that all the .cpp files in the current directory are to be compiled and linked
together in a shared object.

How to do it…
Do the following steps:

1. Create a new .cpp file called FuncBlockCount.cpp:

$ vi FuncBlockCount.cpp

2. In this file, include some header files from LLVM:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

3. Include the llvm namespace to enable access to LLVM functions:

using namespace llvm;

4. Then start with an anonymous namespace:

namespace {

5. Next declare the pass:

struct FuncBlockCount : public FunctionPass {

6. Then declare the pass identifier, which will be used by LLVM to identify the pass:

static char ID;
FuncBlockCount() : FunctionPass(ID) {}

7. This step is one of the most important steps in writing a pass—writing a run function. Since this
pass inherits FunctionPass and runs on a function, a runOnFunction is defined to be run on a
function:

bool runOnFunction(Function &F) override {
 errs() << "Function " << F.getName() << '\n';
 return false;
 }
 };
}

This function prints the name of the function that is being processed.
8. The next step is to initialize the pass ID:

char FuncBlockCount::ID = 0;

9. Finally, the pass needs to be registered, with a command-line argument and a name:

static RegisterPass<FuncBlockCount> X("funcblockcount", "Function Block
Count", false, false);

Putting everything together, the entire code looks like this:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct FuncBlockCount : public FunctionPass {
 static char ID;
 FuncBlockCount() : FunctionPass(ID) {}
 bool runOnFunction(Function &F) override {
 errs() << "Function " << F.getName() << '\n';
 return false;
 }
 };
 }
 char FuncBlockCount::ID = 0;
 static RegisterPass<FuncBlockCount> X("funcblockcount", "Function
Block Count", false, false);

How it works
A simple gmake command compiles the file, so a new file FuncBlockCount.so is generated at the
LLVM root directory. This shared object file can be dynamically loaded to the opt tool to run it on a
piece of LLVM IR code. How to load and run it will be demonstrated in the next section.

See also
To know more on how a pass can be built from scratch, visit
http://llvm.org/docs/WritingAnLLVMPass.html

http://llvm.org/docs/WritingAnLLVMPass.html

Running your own pass with the opt tool
The pass written in the previous recipe, Writing your own LLVM pass, is ready to be run on the
LLVM IR. This pass needs to be loaded dynamically for the opt tool to recognize and execute it.

How to do it…
Do the following steps:

1. Write the C test code in the sample.c file, which we will convert into an .ll file in the next
step:

$ vi sample.c

int foo(int n, int m) {
 int sum = 0;
 int c0;
 for (c0 = n; c0 > 0; c0--) {
 int c1 = m;
 for (; c1 > 0; c1--) {
 sum += c0 > c1 ? 1 : 0;
 }
 }
 return sum;
}

2. Convert the C test code into LLVM IR using the following command:

$ clang –O0 –S –emit-llvm sample.c –o sample.ll

This will generate a sample.ll file.
3. Run the new pass with the opt tool, as follows:

$ opt -load (path_to_.so_file)/FuncBlockCount.so -funcblockcount sample.ll

The output will look something like this:

Function foo

How it works…
As seen in the preceding code, the shared object loads dynamically into the opt command-line tool
and runs the pass. It goes over the function and displays its name. It does not modify the IR. Further
enhancement in the new pass is demonstrated in the next recipe.

See also
To know more about the various types of the Pass class, visit
http://llvm.org/docs/WritingAnLLVMPass.html#pass-classes-and-requirements

http://llvm.org/docs/WritingAnLLVMPass.html#pass-classes-and-requirements

Using another pass in a new pass
A pass may require another pass to get some analysis data, heuristics, or any such information to
decide on a further course of action. The pass may just require some analysis such as memory
dependencies, or it may require the altered IR as well. The new pass that you just saw simply prints
the name of the function. Let's see how to enhance it to count the basic blocks in a loop, which also
demonstrates how to use other pass results.

Getting ready
The code used in the previous recipe remains the same. Some modifications are required, however, to
enhance it—as demonstrated in next section—so that it counts the number of basic blocks in the IR.

How to do it…
The getAnalysis function is used to specify which other pass will be used:

1. Since the new pass will be counting the number of basic blocks, it requires loop information.
This is specified using the getAnalysis loop function:

 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

2. This will call the LoopInfo pass to get information on the loop. Iterating through this object
gives the basic block information:

unsigned num_Blocks = 0;
 Loop::block_iterator bb;
 for(bb = L->block_begin(); bb != L->block_end();++bb)
 num_Blocks++;
 errs() << "Loop level " << nest << " has " << num_Blocks
<< " blocks\n";

3. This will go over the loop to count the basic blocks inside it. However, it counts only the basic
blocks in the outermost loop. To get information on the innermost loop, recursive calling of the
getSubLoops function will help. Putting the logic in a separate function and calling it
recursively makes more sense:

void countBlocksInLoop(Loop *L, unsigned nest) {
 unsigned num_Blocks = 0;
 Loop::block_iterator bb;
 for(bb = L->block_begin(); bb != L->block_end();++bb)
 num_Blocks++;
 errs() << "Loop level " << nest << " has " << num_Blocks
<< " blocks\n";
 std::vector<Loop*> subLoops = L->getSubLoops();
 Loop::iterator j, f;
 for (j = subLoops.begin(), f = subLoops.end(); j != f;
++j)
 countBlocksInLoop(*j, nest + 1);

}

virtual bool runOnFunction(Function &F) {
 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 errs() << "Function " << F.getName() + "\n";
 for (Loop *L : *LI)
 countBlocksInLoop(L, 0);
 return false;
}

How it works…
The newly modified pass now needs to run on a sample program. Follow the given steps to modify
and run the sample program:

1. Open the sample.c file and replace its content with the following program:

int main(int argc, char **argv) {
 int i, j, k, t = 0;
 for(i = 0; i < 10; i++) {
 for(j = 0; j < 10; j++) {
 for(k = 0; k < 10; k++) {
 t++;
 }
 }
 for(j = 0; j < 10; j++) {
 t++;
 }
 }
 for(i = 0; i < 20; i++) {
 for(j = 0; j < 20; j++) {
 t++;
 }
 for(j = 0; j < 20; j++) {
 t++;
 }
 }
 return t;
}

2. Convert it into a .ll file using Clang:

$ clang –O0 –S –emit-llvm sample.c –o sample.ll

3. Run the new pass on the previous sample program:

$ opt -load (path_to_.so_file)/FuncBlockCount.so -funcblockcount sample.ll

The output will look something like this:

Function main
Loop level 0 has 11 blocks
Loop level 1 has 3 blocks

Loop level 1 has 3 blocks
Loop level 0 has 15 blocks
Loop level 1 has 7 blocks
Loop level 2 has 3 blocks
Loop level 1 has 3 blocks

There's more…
The LLVM's pass manager provides a debug pass option that gives us the chance to see which passes
interact with our analyses and optimizations, as follows:

$ opt -load (path_to_.so_file)/FuncBlockCount.so -funcblockcount sample.ll –
disable-output –debug-pass=Structure

Registering a pass with pass manager
Until now, a new pass was a dynamic object that was run independently. The opt tool consists of a
pipeline of such passes that are registered with the pass manager, and a part of LLVM. Let's see how
to register our pass with the Pass Manager.

Getting ready
The PassManager class takes a list of passes, ensures that their prerequisites are set up correctly, and
then schedules the passes to run efficiently. The Pass Manager does two main tasks to try to reduce
the execution time of a series of passes:

Shares the analysis results to avoid recomputing analysis results as much as possible
Pipelines the execution of passes to the program to get better cache and memory usage behavior
out of a series of passes by pipelining the passes together

How to do it…
Follow the given steps to register a pass with Pass Manager:

1. Define a DEBUG_TYPE macro, specifying the debugging name in the FuncBlockCount.cpp file:

#define DEBUG_TYPE "func-block-count"

2. In the FuncBlockCount struct, specify the getAnalysisUsage syntax as follows:

void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.addRequired<LoopInfoWrapperPass>();
 }

3. Now initialize the macros for initialization of the new pass:

INITIALIZE_PASS_BEGIN(FuncBlockCount, " funcblockcount ",
 "Function Block Count", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)

INITIALIZE_PASS_END(FuncBlockCount, "funcblockcount",
 "Function Block Count", false, false)

Pass *llvm::createFuncBlockCountPass() { return new FuncBlockCount(); }

4. Add the createFuncBlockCount Pass function in the LinkAllPasses.h file, located at
include/llvm/:

(void) llvm:: createFuncBlockCountPass ();

5. Add the declaration to the Scalar.h file, located at include/llvm/Transforms:

Pass * createFuncBlockCountPass ();

6. Also modify the constructor of the pass:

FuncBlockCount() : FunctionPass(ID) {initializeFuncBlockCount Pass
(*PassRegistry::getPassRegistry());}

7. In the Scalar.cpp file, located at lib/Transforms/Scalar/, add the initialization pass
entry:

initializeFuncBlockCountPass (Registry);

8. Add this initialization declaration to the InitializePasses.h file, which is located at
include/llvm/:

void initializeFuncBlockCountPass (Registry);

9. Finally, add the FuncBlockCount.cpp filename to the CMakeLists.txt file, located at
lib/Transforms/Scalar/:

FuncBlockCount.cpp

How it works…
Compile the LLVM with the cmake command as specified in Chapter 1, LLVM Design and Use. The
Pass Manager will include this pass in the pass pipeline of the opt command-line tool. Also, this pass
can be run in isolation from the command line:

$ opt –funcblockcount sample.ll

See Also
To know more about adding a pass in Pass Manager in simple steps, study the LoopInstSimplify
pass at http://llvm.org/viewvc/llvm-
project/llvm/trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp

http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp

Writing an analysis pass
The analysis pass provides higher-level information about IR without actually changing the IR. The
results that the analysis pass provides can be used by another analysis pass to compute its result.
Also, once an analysis pass calculates the result, its result can be used several times by different
passes until the IR on which this pass was run is changed. In this recipe, we will write an analysis
pass that counts and outputs the number of opcodes used in a function.

Getting ready
First of all, we write the test code on which we will be running our pass:

$ cat testcode.c
int func(int a, int b){
 int sum = 0;
 int iter;
 for (iter = 0; iter < a; iter++) {
 int iter1;
 for (iter1 = 0; iter1 < b; iter1++) {
 sum += iter > iter1 ? 1 : 0;
 }
 }
 return sum;
}

Transform this into a .bc file, which we will use as the input to the analysis pass:

$ clang -c -emit-llvm testcode.c -o testcode.bc

Now create the file containing the pass source code in
llvm_root_dir/lib/Transforms/opcodeCounter. Here, opcodeCounter is the directory we
have created, and it is where our pass's source code will reside.

Make the necessary Makefile changes so that this pass can be compiled.

How to do it…
Now let's start writing the source code for our analysis pass:

1. Include the necessary header files and use the llvm namespace:

#define DEBUG_TYPE "opcodeCounter"
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;

2. Create the structure defining the pass:

namespace {
struct CountOpcode: public FunctionPass {

3. Within the structure, create the necessary data structures to count the number of opcodes and to
denote the pass ID of the pass:

std::map< std::string, int> opcodeCounter;
static char ID;
CountOpcode () : FunctionPass(ID) {}

4. Within the preceding structure, write the code for the actual implementation of the pass,
overloading the runOnFunction function:

virtual bool runOnFunction (Function &F) {
 llvm::outs() << "Function " << F.getName () << '\n';
for (Function::iterator bb = F.begin(), e = F.end(); bb != e; ++bb) {
 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i!= e; ++i) {
 if(opcodeCounter.find(i->getOpcodeName()) == opcodeCounter.end()) {
 opcodeCounter[i->getOpcodeName()] = 1;
 } else {
 opcodeCounter[i->getOpcodeName()] += 1;
 }
 }
}

std::map< std::string, int>::iterator i = opcodeCounter.begin();
std::map< std::string, int>::iterator e = opcodeCounter.end();
while (i != e) {
 llvm::outs() << i->first << ": " << i->second << "\n";
 i++;
}
llvm::outs() << "\n";
opcodeCounter.clear();
return false;
}
};
}

5. Write the code for registering the pass:

char CountOpcode::ID = 0;
static RegisterPass<CountOpcode> X("opcodeCounter", "Count number of opcode
in a functions");

6. Compile the pass using the make or cmake command.
7. Run the pass on the test code using the opt tool to get the information on the number of opcodes

present in the function:

$ opt -load path-to-build-folder/lib/LLVMCountopcodes.so -opcodeCounter -
disable-output testcode.bc
Function func
add: 3
alloca: 5
br: 8
icmp: 3

load: 10
ret: 1
select: 1
store: 8

How it works…
This analysis pass works on a function level, running once for each function in the program. Hence,
we have inherited the FunctionPass function when declaring the CountOpcodes : public
FunctionPass struct.

The opcodeCounter function keeps a count of every opcode that has been used in the function. In the
following for loops, we collect the opcodes from all the functions:

for (Function::iterator bb = F.begin(), e = F.end(); bb != e; ++bb) {
for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; ++i) {

The first for loop iterates over all the basic blocks present in the function, and the second for loop
iterates over all the instructions present in the basic block.

The code in the first for loop is the actual code that collects the opcodes and their numbers. The code
below the for loops is meant for printing the results. As we have used a map to store the result, we
iterate over it to print the pair of the opcode name and its number in the function.

We return false because we are not modifying anything in the test code. The last two lines of the
code are meant for registering this pass with the given name so that the opt tool can use this pass.

Finally, on execution of the test code, we get the output as different opcodes used in the function and
their numbers.

Writing an alias analysis pass
Alias analysis is a technique by which we get to know whether two pointers point to the same
location—that is, whether the same location can be accessed in more ways than one. By getting the
results of this analysis, you can decide about further optimizations, such as common subexpression
elimination. There are different ways and algorithms to perform alias analysis. In this recipe, we will
not deal with these algorithms, but we will see how LLVM provides the infrastructure to write your
own alias analysis pass. In this recipe, we will write an alias analysis pass to see how to get started
with writing such a pass. We will not make use of any specific algorithm, but will return the
MustAlias response in every case of the analysis.

Getting ready
Write the test code that will be the input for alias analysis. Here, we will take the testcode.c file
used in the previous recipe as the test code.

Make the necessary Makefile changes, make changes to register the pass by adding entries for the
pass in llvm/lib/Analysis/Analysis.cpp llvm/include/llvm/InitializePasses.h,
llvm/include/llvm/LinkAllPasses.h, llvm/include/llvm/Analysis/Passes.h and create a
file in llvm_source_dir/lib/Analysis/ named EverythingMustAlias.cpp that will contain the
source code for our pass.

How to do it...
Do the following steps:

1. Include the necessary header files and use the llvm namespace:

#include "llvm/Pass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
using namespace llvm;

2. Create a structure for our pass by inheriting the ImmutablePass and AliasAnalysis classes:

namespace {
struct EverythingMustAlias : public ImmutablePass, public AliasAnalysis {

3. Declare the data structures and constructor:

static char ID;
EverythingMustAlias() : ImmutablePass(ID) {}
initializeEverythingMustAliasPass(*PassRegistry::getPassRegistry());}

4. Implement the getAdjustedAnalysisPointer function:

 void *getAdjustedAnalysisPointer(const void *ID) override {

 if (ID == &AliasAnalysis::ID)
 return (AliasAnalysis*)this;
 return this;
 }

5. Implement the initializePass function to initialize the pass:

bool doInitialization(Module &M) override {
 DL = &M.getDataLayout();
 return true;
 }

6. Implement the alias function:

void *getAdjustedAnalysisPointer(const void *ID) override {
 if (ID == &AliasAnalysis::ID)
 return (AliasAnalysis*)this;
 return this;
 }
};
}

7. Register the pass:

char EverythingMustAlias::ID = 0;
INITIALIZE_AG_PASS(EverythingMustAlias, AliasAnalysis, "must-aa",
"Everything Alias (always returns 'must' alias)", true, true, true)

ImmutablePass *llvm::createEverythingMustAliasPass() { return new
EverythingMustAlias(); }

8. Compile the pass using the cmake or make command.
9. Execute the test code using the .so file that is formed after compiling the pass:

$ opt -must-aa -aa-eval -disable-output testcode.bc
===== Alias Analysis Evaluator Report =====
 10 Total Alias Queries Performed
 0 no alias responses (0.0%)
 0 may alias responses (0.0%)
 0 partial alias responses (0.0%)
 10 must alias responses (100.0%)
 Alias Analysis Evaluator Pointer Alias Summary: 0%/0%/0%/100%
 Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!

How it works…
The AliasAnalysis class gives the interface that the various alias analysis implementations should
support. It exports the AliasResult and ModRefResult enums, representing the results of the alias
and modref query respectively.

The alias method is used to check whether two memory objects are pointing to the same location or
not. It takes two memory objects as the input and returns MustAlias, PartialAlias, MayAlias, or

NoAlias as appropriate.

The getModRefInfo method returns the information on whether the execution of an instruction can
read or modify a memory location. The pass in the preceding example works by returning the value
MustAlias for every set of two pointers, as we have implemented it that way. Here, we have
inherited the ImmutablePasses class, which suits our pass, as it is a very basic pass. We have
inherited the AliasAnalysis pass, which provides the interface for our implementation.

The getAdjustedAnalysisPointer function is used when a pass implements an analysis interface
through multiple inheritance. If needed, it should override this to adjust the pointer as required for the
specified pass information.

The initializePass function is used to initialize the pass that contains the
InitializeAliasAnalysis method, which should contain the actual implementation of the alias
analysis.

The getAnalysisUsage method is used to declare any dependency on other passes by explicitly
calling the AliasAnalysis::getAnalysisUsage method.

The alias method is used to determine whether two memory objects alias each other or not. It takes
two memory objects as the input and returns the MustAlias, PartialAlias, MayAlias, or NoAlias
responses as appropriate.

The code following the alias method is meant for registering the pass. Finally, when we use this
pass over the test code, we get 10 MustAlias responses (100.0%) as the result, as implemented in
our pass.

See also
For a more detailed insight into LLVM alias analysis, refer to
http://llvm.org/docs/AliasAnalysis.html.

http://llvm.org/docs/AliasAnalysis.html

Using other analysis passes
In this recipe, we will take a brief look into the other analysis passes that are provided by LLVM and
can be used to get analysis information about a basic block, function, module, and so on. We will look
into passes that have already been implemented in LLVM, and how we can use them for our purpose.
We will not go through all the passes but take a look at only some of them.

Getting ready…
Write the test code in the testcode1.c file, which will be used for analysis purposes:

$ cat testcode1.c
void func() {
int i;
char C[2];
char A[10];
for(i = 0; i != 10; ++i) {
 ((short*)C)[0] = A[i];
 C[1] = A[9-i];
}
}

Convert the C code to bitcode format, using the following command line:

$ clang -c -emit-llvm testcode1.c -o testcode1.bc

How to do it…
Follow the steps given to use other analysis passes:

1. Use the alias analysis evaluator pass by passing –aa-eval as a command-line option to the opt
tool:

$ opt -aa-eval -disable-output testcode1.bc
===== Alias Analysis Evaluator Report =====
36 Total Alias Queries Performed
0 no alias responses (0.0%)
36 may alias responses (100.0%)
0 partial alias responses (0.0%)
0 must alias responses (0.0%)
Alias Analysis Evaluator Pointer Alias Summary: 0%/100%/0%/0%
Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!

2. Print the dominator tree information using the –print-dom-info command-line option along
with opt:

$ opt -print-dom-info -disable-output testcode1.bc
=============================--------------------------------
Inorder Dominator Tree:
 [1] %0 {0,9}

 [2] %1 {1,8}
 [3] %4 {2,5}
 [4] %19 {3,4}
 [3] %22 {6,7}

3. Count the number of queries made by one pass to another using the –count-aa command-line
option along with opt:

$ opt -count-aa -basicaa -licm -disable-output testcode1.bc
No alias: [4B] i32* %i, [1B] i8* %7
No alias: [4B] i32* %i, [2B] i16* %12
No alias: [1B] i8* %7, [2B] i16* %12
No alias: [4B] i32* %i, [1B] i8* %16
Partial alias: [1B] i8* %7, [1B] i8* %16
No alias: [2B] i16* %12, [1B] i8* %16
Partial alias: [1B] i8* %7, [1B] i8* %16
No alias: [4B] i32* %i, [1B] i8* %18
No alias: [1B] i8* %18, [1B] i8* %7
No alias: [1B] i8* %18, [1B] i8* %16
Partial alias: [2B] i16* %12, [1B] i8* %18
Partial alias: [2B] i16* %12, [1B] i8* %18

===== Alias Analysis Counter Report =====
 Analysis counted:
 12 Total Alias Queries Performed
 8 no alias responses (66%)
 0 may alias responses (0%)
 4 partial alias responses (33%)
 0 must alias responses (0%)
 Alias Analysis Counter Summary: 66%/0%/33%/0%

 0 Total Mod/Ref Queries Performed

4. Print the alias sets in a program using the -print-alias-sets command-line option with opt:

$ opt -basicaa -print-alias-sets -disable-output testcode1.bc
Alias Set Tracker: 3 alias sets for 5 pointer values.
 AliasSet[0x336b120, 1] must alias, Mod/Ref Pointers: (i32* %i, 4)
 AliasSet[0x336b1c0, 2] may alias, Ref Pointers: (i8* %7, 1), (i8*
%16, 1)
 AliasSet[0x338b670, 2] may alias, Mod Pointers: (i16* %12, 2), (i8*
%18, 1)

How it works…
In the first case, where we use the -aa-eval option, the opt tool runs the alias analysis evaluator
pass, which outputs the analysis on the screen. It iterates through all pairs of pointers in the function
and queries whether the two are aliases of each other or not.

Using the -print-dom-info option, the pass for printing the dominator tree is run, through which
information about the dominator tree can be obtained.

In the third case, we execute the opt -count-aa -basicaa –licm command. The count-aa
command option counts the number of queries made by the licm pass to the basicaa pass. This
information is obtained by the count alias analysis pass using the opt tool.

To print all the alias sets within a program, we use the - print-alias-sets command-line option.
In this case, it prints the alias sets obtained after analyzing with the basicaa pass.

See also
Refer to http://llvm.org/docs/Passes.html#anal to know about more passes not mentioned here.

http://llvm.org/docs/Passes.html#anal

Chapter 5. Implementing Optimizations
In this chapter, we will cover the following recipes:

Writing a dead code elimination pass
Writing an inlining transformation pass
Writing a pass for memory optimization
Combining LLVM IR
Transforming and optimizing loops
Reassociating expressions
Vectorizing IR
Other optimization passes

Introduction
In the previous chapter, we saw how to write a pass in LLVM. We also demonstrated writing a few
analysis passes with an example of alias analysis. Those passes just read the source code and gave us
information about it. In this chapter, we will go further and write transformation passes that will
actually change the source code, trying to optimize it for the faster execution of code. In the first two
recipes, we will show you how a transformation pass is written and how it changes the code. After
that, we will see how we can make changes in the code of passes to tinker with the behavior of the
passes.

Writing a dead code elimination pass
In this recipe, you will learn how to eliminate dead code from the program. By dead code
elimination, we mean removing the code that has no effect whatsoever on the results that the source
program outputs on executing. The main reasons to do so are reduction of the program size, which
makes the code quality good and makes it easier to debug the code later on; and improving the run
time of the program, as the unnecessary code is prevented from being executed. In this recipe, we will
show you a variant of dead code elimination, called aggressive dead code elimination, that assumes
every piece of code to be dead until proven otherwise. We will see how to implement this pass
ourselves, and what modifications we need to make so that the pass can run just like other passes in
the lib/Transforms/Scalar folder of the LLVM trunk.

Getting ready
To show the implementation of dead code elimination, we will need a piece of test code, on which
we will run the aggressive dead code elimination pass:

$ cat testcode.ll
declare i32 @strlen(i8*) readonly nounwind
define void @test() {
 call i32 @strlen(i8* null)
 ret void
}

In this test code, we can see that a call to the strlen function is made in the test function, but the
return value is not used. So, this should be treated as dead code by our pass.

In the file, include the InitializePasses.h file, located at /llvm/; and in the llvm namespace, add
an entry for the pass that we are going to write:

namespace llvm {
…
…
void initializeMYADCEPass(PassRegistry&); // Add this line

In the scalar.h file, located at include/llvm-c/scalar.h/Transform/, add the entry for the
pass:

void LLVMAddMYAggressiveDCEPass(LLVMPassManagerRef PM);

In the include/llvm/Transform/scalar.h file, add the entry for the pass in the llvm namespace:

FunctionPass *createMYAggressiveDCEPass();

In the lib/Transforms/Scalar/scalar.cpp file, add the entry for the pass in two places. In the
void llvm::initializeScalarOpts(PassRegistry &Registry) function, add the following
code:

initializeMergedLoadStoreMotionPass(Registry); // already present in the file
initializeMYADCEPass(Registry); // add this line
initializeNaryReassociatePass(Registry); // already present in the file
…
…
void LLVMAddMemCpyOptPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createMemCpyOptPass());
}

// add the following three lines
void LLVMAddMYAggressiveDCEPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createMYAggressiveDCEPass());
}

void LLVMAddPartiallyInlineLibCallsPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createPartiallyInlineLibCallsPass());
}
…

How to do it…
We will now write the code for the pass:

1. Include the necessary header files:

#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;

2. Declare the structure of our pass:

namespace {
struct MYADCE : public FunctionPass {
 static char ID; // Pass identification, replacement for typeid
 MYADCE() : FunctionPass(ID) {
 initializeMYADCEPass(*PassRegistry::getPassRegistry());
 }

 bool runOnFunction(Function& F) override;

 void getAnalysisUsage(AnalysisUsage& AU) const override {
 AU.setPreservesCFG();
 }
};
}

3. Initialize the pass and its ID:

char MYADCE::ID = 0;
INITIALIZE_PASS(MYADCE, "myadce", "My Aggressive Dead Code Elimination",
false, false)

4. Implement the actual pass in the runOnFunction function:

bool MYADCE::runOnFunction(Function& F) {
 if (skipOptnoneFunction(F))
 return false;

 SmallPtrSet<Instruction*, 128> Alive;
 SmallVector<Instruction*, 128> Worklist;

 // Collect the set of "root" instructions that are known live.
 for (Instruction &I : inst_range(F)) {
 if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
isa<LandingPadInst>(I) || I.mayHaveSideEffects()) {
 Alive.insert(&I);
 Worklist.push_back(&I);
 }
 }

 // Propagate liveness backwards to operands.
 while (!Worklist.empty()) {
 Instruction *Curr = Worklist.pop_back_val();
 for (Use &OI : Curr->operands()) {
 if (Instruction *Inst = dyn_cast<Instruction>(OI))
 if (Alive.insert(Inst).second)
 Worklist.push_back(Inst);
 }
 }

// the instructions which are not in live set are considered dead in this
pass. The instructions which do not effect the control flow, return value
and do not have any side effects are hence deleted.
 for (Instruction &I : inst_range(F)) {
 if (!Alive.count(&I)) {
 Worklist.push_back(&I);
 I.dropAllReferences();
 }
 }

 for (Instruction *&I : Worklist) {
 I->eraseFromParent();
 }

 return !Worklist.empty();
}
}

FunctionPass *llvm::createMYAggressiveDCEPass() {
 return new MYADCE();

}

5. Run the preceding pass after compiling the testcode.ll file, which can be found in the Getting
ready section of this recipe:

$ opt -myadce -S testcode.ll

; ModuleID = 'testcode.ll'

; Function Attrs: nounwind readonly
declare i32 @strlen(i8*) #0

define void @test() {
 ret void
}

How it works…
The pass works by first collecting a list of all the root instructions that are live in the first for loop of
the runOnFunction function.

Using this information, we move backwards, propagating liveness to the operands in the while
(!Worklist.empty()) loop.

In the next for loop, we remove the instructions that are not live, that is, dead. Also, we check
whether any reference was made to these values. If so, we drop all such references, which are also
dead.

On running the the pass on the test code, we see the dead code; the call to the strlen function is
removed.

Note that the code has been added to the LLVM trunk revision number 234045. So, when you are
actually trying to implement it, some definitions might be updated. In this case, modify the code
accordingly.

See also
For various other kinds of dead code elimination method, you can refer to the
llvm/lib/Transfroms/Scalar folder, where the code for other kinds of DCEs is present.

Writing an inlining transformation pass
As we know, by inlining we mean expanding the function body of the function called at the call site,
as it may prove useful through faster execution of code. The compiler takes the decision whether to
inline a function or not. In this recipe, you will learn to how to write a simple function-inlining pass
that makes use of the implementation in LLVM for inlining. We will write a pass that will handle the
functions marked with the alwaysinline attribute.

Getting ready
Let's write a test code that we will run our pass on. Make the necessary changes in the
lib/Transforms/IPO/IPO.cpp and include/llvm/InitializePasses.h files, the
include/llvm/Transforms/IPO.h file, and the /include/llvm-c/Transforms/IPO.h file to
include the following pass. Also make the necessary makefile changes to include his pass:

$ cat testcode.c
define i32 @inner1() alwaysinline {
 ret i32 1
}
define i32 @outer1() {
 %r = call i32 @inner1()
 ret i32 %r
}

How to do it…
We will now write the code for the pass:

1. Include the necessary header files:

#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Transforms/IPO/InlinerPass.h"

using namespace llvm;

2. Describe the class for our pass:

namespace {

class MyInliner : public Inliner {
 InlineCostAnalysis *ICA;

public:
 MyInliner() : Inliner(ID, -2000000000,
/*InsertLifetime*/ true),
 ICA(nullptr) {
 initializeMyInlinerPass(*PassRegistry::getPassRegistry());
 }

 MyInliner(bool InsertLifetime)
 : Inliner(ID, -2000000000, InsertLifetime), ICA(nullptr) {
 initializeMyInlinerPass(*PassRegistry::getPassRegistry());
 }

 static char ID;

 InlineCost getInlineCost(CallSite CS) override;

 void getAnalysisUsage(AnalysisUsage &AU) const override;
 bool runOnSCC(CallGraphSCC &SCC) override;

 using llvm::Pass::doFinalization;
 bool doFinalization(CallGraph &CG) override {
 return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/ true);
 }
};
}

3. Initialize the pass and add the dependencies:

char MyInliner::ID = 0;
INITIALIZE_PASS_BEGIN(MyInliner, "my-inline",
 "Inliner for always_inline functions", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)
INITIALIZE_PASS_END(MyInliner, "my-inline",
 "Inliner for always_inline functions", false, false)

Pass *llvm::createMyInlinerPass() { return new MyInliner(); }

Pass *llvm::createMynlinerPass(bool InsertLifetime) {
 return new MyInliner(InsertLifetime);
}

4. Implement the function to get the inlining cost:

InlineCost MyInliner::getInlineCost(CallSite CS) {
 Function *Callee = CS.getCalledFunction();

if (Callee && !Callee->isDeclaration() &&
 CS.hasFnAttr(Attribute::AlwaysInline) &&
 ICA->isInlineViable(*Callee))
 return InlineCost::getAlways();

 return InlineCost::getNever();
}

5. Write the other helper methods:

bool MyInliner::runOnSCC(CallGraphSCC &SCC) {
 ICA = &getAnalysis<InlineCostAnalysis>();
 return Inliner::runOnSCC(SCC);
}

void MyInliner::getAnalysisUsage(AnalysisUsage &AU) const {
 AU.addRequired<InlineCostAnalysis>();
 Inliner::getAnalysisUsage(AU);
}

6. Compile the pass. After compiling, run it on the preceding test case:

$ opt -inline-threshold=0 -always-inline -S test.ll

; ModuleID = 'test.ll'

; Function Attrs: alwaysinline
define i32 @inner1() #0 {
 ret i32 1
}
define i32 @outer1() {
 ret i32 1
}

How it works...
This pass that we have written will work for the functions with the alwaysinline attribute. The pass
will always inline such functions.

The main function at work here is InlineCost getInlineCost(CallSite CS). This is a function in
the inliner.cpp file, which needs to be overridden here. So, on the basis of the inlining cost
calculated here, we decide whether or not to inline a function. The actual implementation, on how the
inlining process works, is in the inliner.cpp file.

In this case, we return InlineCost::getAlways(); for the functions marked with the alwaysinline
attribute. For the others, we return InlineCost::getNever(). In this way, we can implement
inlining for this simple case. If you want to dig deeper and try other variations of inlining—and learn
how to make decisions about inlining—you can check out the inlining.cpp file.

When this pass is run over the test code, we see that the call of the inner1 function is replaced by its

actual function body.

Writing a pass for memory optimization
In this recipe, we will briefly discuss a transformation pass that deals with memory optimization.

Getting ready
For this recipe, you will need the opt tool installed.

How to do it…
1. Write the test code on which we will run the memcpy optimization pass:

$ cat memcopytest.ll
@cst = internal constant [3 x i32] [i32 -1, i32 -1, i32 -1], align 4

declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64,
i32, i1) nounwind
declare void @foo(i32*) nounwind

define void @test1() nounwind {
 %arr = alloca [3 x i32], align 4
 %arr_i8 = bitcast [3 x i32]* %arr to i8*
 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %arr_i8, i8* bitcast ([3 x i32]*
@cst to i8*), i64 12, i32 4, i1 false)
 %arraydecay = getelementptr inbounds [3 x i32], [3 x i32]* %arr, i64 0,
i64 0
 call void @foo(i32* %arraydecay) nounwind
 ret void
}

2. Run the memcpyopt pass on the preceding test case:

$ opt -memcpyopt -S memcopytest.ll
; ModuleID = ' memcopytest.ll'

@cst = internal constant [3 x i32] [i32 -1, i32 -1, i32 -1], align 4

; Function Attrs: nounwind
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture
readonly, i64, i32, i1) #0

; Function Attrs: nounwind
declare void @foo(i32*) #0

; Function Attrs: nounwind
define void @test1() #0 {
 %arr = alloca [3 x i32], align 4
 %arr_i8 = bitcast [3 x i32]* %arr to i8*
 call void @llvm.memset.p0i8.i64(i8* %arr_i8, i8 -1, i64 12, i32 4, i1
false)
 %arraydecay = getelementptr inbounds [3 x i32]* %arr, i64 0, i64 0

 call void @foo(i32* %arraydecay) #0
 ret void
}

; Function Attrs: nounwind
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) #0

attributes #0 = { nounwind }

How it works…
The Memcpyopt pass deals with eliminating the memcpy calls wherever possible, or transforms them
into other calls.

Consider this memcpy call:

call void @llvm.memcpy.p0i8.p0i8.i64(i8* %arr_i8, i8* bitcast ([3 x i32]* @cst

to i8*), i64 12, i32 4, i1 false).

In the preceding test case, this pass converts it into a memset call:

call void @llvm.memset.p0i8.i64(i8* %arr_i8, i8 -1, i64 12, i32 4, i1 false)

If we look into the source code of the pass, we realize that this transformation is brought about by the
tryMergingIntoMemset function in the MemCpyOptimizer.cpp file in
llvm/lib/Transforms/Scalar.

The tryMergingIntoMemset function looks for some other pattern to fold away when scanning
forward over instructions. It looks for stores in the neighboring memory and, on seeing consecutive
ones, it attempts to merge them together into memset.

The processMemSet function looks out for any other neighboring memset to this memset, which helps
us widen out the memset call to create a single larger store.

See also
To see the details of the various types of memory optimization passes, go to
http://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization.

http://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization

Combining LLVM IR
In this recipe, you will learn about instruction combining in LLVM. By instruction combining, we
mean replacing a sequence of instructions with more efficient instructions that produce the same result
in fewer machine cycles. In this recipe, we will see how we can make modifications in the LLVM
code to combine certain instructions.

Getting started
To test our implementation, we will write test code that we will use to verify that our implementation
is working properly to combine instructions:

define i32 @test19(i32 %x, i32 %y, i32 %z) {
 %xor1 = xor i32 %y, %z
 %or = or i32 %x, %xor1
 %xor2 = xor i32 %x, %z
 %xor3 = xor i32 %xor2, %y
 %res = xor i32 %or, %xor3
 ret i32 %res
}

How to do it…
1. Open the lib/Transforms/InstCombine/InstCombineAndOrXor.cpp file.
2. In the InstCombiner::visitXor(BinaryOperator &I) function, go to the if condition—if

(Op0I && Op1I)—and add this:

if (match(Op0I, m_Or(m_Xor(m_Value(B), m_Value(C)), m_Value(A))) &&
 match(Op1I, m_Xor(m_Xor(m_Specific(A), m_Specific(C)),
m_Specific(B)))) {
 return BinaryOperator::CreateAnd(A, Builder->CreateXor(B,C)); }

3. Now build LLVM again so that the Opt tool can use the new functionality and run the test case in
this way:

Opt –instcombine –S testcode.ll
define i32 @test19(i32 %x, i32 %y, i32 %z) {
%1 = xor i32 %y, %z
 %res = and i32 %1, %x
 ret i32 %res
}

How it works…
In this recipe, we added code to the instruction combining file, which handles transformations
involving the AND, OR, and XOR operators.

We added code for matching the pattern of the (A | (B ^ C)) ^ ((A ^ C) ^ B) form, and reduced it to

A & (B ^ C). The if (match(Op0I, m_Or(m_Xor(m_Value(B), m_Value(C)), m_Value(A)))
&& match(Op1I, m_Xor(m_Xor(m_Specific(A), m_Specific(C)), m_Specific(B)))) line
looks out for the pattern similar to the one shown at the start of this paragraph.

The return BinaryOperator::CreateAnd(A, Builder->CreateXor(B,C)); line returns the
reduced value after building a new instruction, replacing the previous matched code.

When we run the instcombine pass over the test code, we get the reduced result. You can see the
number of operations is reduced from five to two.

See also
The topic of instruction combining is very wide, and there are loads and loads of possibilities.
Similar to the instruction combining function is the instruction simplify function, where we
simplify complicated instructions but don't necessarily reduce the number of instructions, as is
the case with instruction combining. To look more deeply into this, go through the code in the
lib/Transforms/InstCombine folder

Transforming and optimizing loops
In this recipe, we will see how we can transform and optimize loops to get shorter execution times.
We will mainly be looking into the Loop-Invariant Code Motion (LICM) optimization technique,
and see how it works and how it transforms the code. We will also look at a relatively simpler
technique called loop deletion, where we eliminate loops with non-infinite, computable trip counts
that have no side effects on a function's return value.

Getting ready
You must have the opt tool built for this recipe.

How to do it…
1. Write the test cases for the LICM pass:

$ cat testlicm.ll
define void @testfunc(i32 %i) {
; <label>:0
 br label %Loop
Loop: ; preds = %Loop, %0
 %j = phi i32 [0, %0], [%Next, %Loop] ; <i32> [#uses=1]
 %i2 = mul i32 %i, 17 ; <i32> [#uses=1]
 %Next = add i32 %j, %i2 ; <i32> [#uses=2]
 %cond = icmp eq i32 %Next, 0 ; <i1> [#uses=1]
 br i1 %cond, label %Out, label %Loop
Out: ; preds = %Loop
 ret void
}

2. Execute the LICM pass on this test code:

$ opt licmtest.ll -licm -S
; ModuleID = 'licmtest.ll'

define void @testfunc(i32 %i) {
 %i2 = mul i32 %i, 17
 br label %Loop

Loop: ; preds = %Loop, %0
 %j = phi i32 [0, %0], [%Next, %Loop]
 %Next = add i32 %j, %i2
 %cond = icmp eq i32 %Next, 0
 br i1 %cond, label %Out, label %Loop

Out: ; preds = %Loop
 ret void
}

3. Write the test code for the loop deletion pass:

$ cat deletetest.ll
define void @foo(i64 %n, i64 %m) nounwind {
entry:
 br label %bb

bb:
 %x.0 = phi i64 [0, %entry], [%t0, %bb2]
 %t0 = add i64 %x.0, 1
 %t1 = icmp slt i64 %x.0, %n
 br i1 %t1, label %bb2, label %return
bb2:
 %t2 = icmp slt i64 %x.0, %m
 br i1 %t1, label %bb, label %return

return:
 ret void
}

4. Finally, run the loop deletion pass over the test code:

$ opt deletetest.ll -loop-deletion -S
; ModuleID = "deletetest.ll'

; Function Attrs: nounwind
define void @foo(i64 %n, i64 %m) #0 {
entry:
 br label %return

return: ; preds = %entry
 ret void
}

attributes #0 = { nounwind }

How it works…
The LICM pass performs loop-invariant code motion; it tries to move the code that is not modified in
the loop out of the loop. It can go either above the loop in the pre-header block, or after the loop exits
from the exit block.

In the example shown earlier, we saw the %i2 = mul i32 %i, 17 part of the code being moved above
the loop, as it is not getting modified within the loop block shown in that example.

The loop deletion pass looks out for loops with non-infinite trip counts that have no effect on the
return value of the function.

In the test code, we saw how both the basic blocks bb: and bb2:, which have the loop part, get
deleted. We also saw how the foo function directly branches to the return statement.

There are many other techniques for optimizing loops, such as loop-rotate, loop-unswitch, and

loop-unroll, which you can try yourself. You will then see how they affect the code.

Reassociating expressions
In this recipe, you will learn about reassociating expressions and how it helps in optimization.

Getting Ready
The opt tool should be installed for this recipe to work.

How to do it…
1. Write the test case for a simple reassociate transformation:

$ cat testreassociate.ll
define i32 @test(i32 %b, i32 %a) {
 %tmp.1 = add i32 %a, 1234
 %tmp.2 = add i32 %b, %tmp.1
 %tmp.4 = xor i32 %a, -1
 ; (b+(a+1234))+~a -> b+1233
 %tmp.5 = add i32 %tmp.2, %tmp.4
 ret i32 %tmp.5
}

2. Run the reassociate pass on this test case to see how the code is modified:

$ opt testreassociate.ll –reassociate –die –S
define i32 @test(i32 %b, i32 %a) {
%tmp.5 = add i32 %b, 1233
ret i32 %tmp.5
}

How it works …
By reassociation, we mean applying algebraic properties such as associativity, commutativity, and
distributivity to rearrange an expression to enable other optimizations, such as constant folding,
LICM, and so on.

In the preceding example, we used the inverse property to eliminate patterns such as "X + ~X" ->
"-1" using reassociation.

The first three lines of the test case give us the expression of the form (b+(a+1234))+~a. In this
expression, using the reassociate pass, we transform a+~a to -1. Hence, in the result, we get the final
return value as b+1234-1 = b+1233.

The code that handles this transformation is in the Reassociate.cpp file, located under
lib/Transforms/Scalar.

If you look into this file, specifically the code segment, you can see that it checks whether there are a

and ~a in the operand list:

if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isNot(TheOp))
 continue;

 Value *X = nullptr;
 …
 …
 else if (BinaryOperator::isNot(TheOp))
 X = BinaryOperator::getNotArgument(TheOp);

unsigned FoundX = FindInOperandList(Ops, i, X);

The following code is responsible for handling and inserting the -1 value when it gets such values in
the expression:

if (BinaryOperator::isNot(TheOp)) {
 Value *V = Constant::getAllOnesValue(X->getType());
 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
 e += 1;
 }

Vectorizing IR
Vectorization is an important optimization for compilers where we can vectorize code to execute an
instruction on multiple datasets in one go. If the backend architecture supports vector registers, a
broad range of data can be loaded into those vector registers, and special vector instructions can be
executed on the registers.

There are two types of vectorization in LLVM—Superword-Level Parallelism (SLP) and loop
vectorization. Loop vectorization deals with vectorization opportunities in a loop, while SLP
vectorization deals with vectorizing straight-line code in a basic block. In this recipe, we will see
how straight-line code is vectorized.

Getting ready
SLP vectorization constructs a bottom-up tree of the IR expression, and broadly compares the nodes
of the tree to see whether they are similar and hence can be combined to form vectors. The file to be
modified is lib/Transform/Vectorize/SLPVectorizer.cpp.

We will try to vectorize a piece of straight-line code, such as return a[0] + a[1] + a[2] + a[3].

The expression tree for the preceding type of code will be a somewhat one-sided tree. We will run a
DFS to store the operands and the operators.

The IR for the preceding kind of expression will look like this:

define i32 @hadd(i32* %a) {
entry:
 %0 = load i32* %a, align 4
 %arrayidx1 = getelementptr inbounds i32* %a, i32 1
 %1 = load i32* %arrayidx1, align 4
 %add = add nsw i32 %0, %1
 %arrayidx2 = getelementptr inbounds i32* %a, i32 2
 %2 = load i32* %arrayidx2, align 4
 %add3 = add nsw i32 %add, %2
 %arrayidx4 = getelementptr inbounds i32* %a, i32 3
 %3 = load i32* %arrayidx4, align 4
 %add5 = add nsw i32 %add3, %3
 ret i32 %add5
}

The vectorization model follows three steps:

1. Checking whether it's legal to vectorize.
2. Calculating the profitability of the vectorized code over the scalarized code.
3. Vectorizing the code if these two conditions are satisfied.

How to do it...

1. Open the SLPVectorizer.cpp file. A new function needs to be implemented for DFS traversal
of the expression tree for the IR shown in the Getting ready section:

bool matchFlatReduction(PHINode *Phi, BinaryOperator *B, const DataLayout
*DL) {

 if (!B)
 return false;

 if (B->getType()->isVectorTy() ||
 !B->getType()->isIntegerTy())
 return false;

ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0;
ReduxWidth = MinVecRegSize / DL->getTypeAllocSizeInBits(B->getType());
ReductionRoot = B;
ReductionPHI = Phi;

if (ReduxWidth < 4)
 return false;
if (ReductionOpcode != Instruction::Add)
 return false;

SmallVector<BinaryOperator *, 32> Stack;
ReductionOps.push_back(B);
ReductionOpcode = B->getOpcode();
Stack.push_back(B);

// Traversal of the tree.
while (!Stack.empty()) {
 BinaryOperator *Bin = Stack.back();
 if (Bin->getParent() != B->getParent())
 return false;
 Value *Op0 = Bin->getOperand(0);
 Value *Op1 = Bin->getOperand(1);
 if (!Op0->hasOneUse() || !Op1->hasOneUse())
 return false;
 BinaryOperator *Op0Bin = dyn_cast<BinaryOperator>(Op0); BinaryOperator
*Op1Bin = dyn_cast<BinaryOperator>(Op1); Stack.pop_back();

 // Do not handle case where both the operands are binary
//operators
 if (Op0Bin && Op1Bin)
 return false;
 // Both the operands are not binary operator.
 if (!Op0Bin && !Op1Bin) {
 ReducedVals.push_back(Op1);
 ReducedVals.push_back(Op0);

 ReductionOps.push_back(Bin);
 continue;
}

// One of the Operand is binary operand, push that into stack
// for further processing. Push the other non-binary operand //into
ReducedVals.
 if (Op0Bin) {
 if (Op0Bin->getOpcode() != ReductionOpcode)
 return false;
 Stack.push_back(Op0Bin);
 ReducedVals.push_back(Op1);

 ReductionOps.push_back(Op0Bin);
 }

 if (Op1Bin) {

 if (Op1Bin->getOpcode() != ReductionOpcode)
 return false;
 Stack.push_back(Op1Bin);
 ReducedVals.push_back(Op0);
 ReductionOps.push_back(Op1Bin);
 }
}
SmallVector<Value *, 16> Temp;
// Reverse the loads from a[3], a[2], a[1], a[0]

// to a[0], a[1], a[2], a[3] for checking incremental
// consecutiveness further ahead.
while (!ReducedVals.empty())
 Temp.push_back(ReducedVals.pop_back_val());
ReducedVals.clear();
for (unsigned i = 0, e = Temp.size(); i < e; ++i)
 ReducedVals.push_back(Temp[i]);
 return true;
}

2. Calculate the cost of the resultant vectorized IR and conclude whether it is profitable to
vectorize. In the SLPVectorizer.cpp file, add the following lines to the getReductionCost()
function:

int HAddCost = INT_MAX;
// If horizontal addition pattern is identified, calculate cost.

// Such horizontal additions can be modeled into combination of

// shuffle sub-vectors and vector adds and one single extract element

// from last resultant vector.

// e.g. a[0]+a[1]+a[2]+a[3] can be modeled as // %1 = load <4 x> %0
// %2 = shuffle %1 <2, 3, undef, undef>
// %3 = add <4 x> %1, %2
// %4 = shuffle %3 <1, undef, undef, undef>

// %5 = add <4 x> %3, %4

// %6 = extractelement %5 <0>
if (IsHAdd) {
 unsigned VecElem = VecTy->getVectorNumElements();
 unsigned NumRedxLevel = Log2_32(VecElem);
 HAddCost = NumRedxLevel *
 (TTI->getArithmeticInstrCost(ReductionOpcode, VecTy) + TTI-
>getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, VecTy, VecElem /
2, VecTy)) + TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 0);
 }

3. In the same function, after calculating PairwiseRdxCost and SplittingRdxCost, compare
them with HAddCost:

VecReduxCost = HAddCost < VecReduxCost ? HAddCost : VecReduxCost;

4. In the vectorizeChainsInBlock() function, call the matchFlatReduction() function you just
defined:

// Try to vectorize horizontal reductions feeding into a return.
if (ReturnInst *RI = dyn_cast<ReturnInst>(it))

if (RI->getNumOperands() != 0)
if (BinaryOperator *BinOp =
 dyn_cast<BinaryOperator>(RI->getOperand(0))) {

 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");

 HorizontalReduction HorRdx;
 IsReturn = true;

 if ((HorRdx.matchFlatReduction(nullptr, BinOp, DL) &&
HorRdx.tryToReduce(R, TTI)) || tryToVectorizePair(BinOp->getOperand(0),
BinOp->getOperand(1), R)) {
 Changed = true;

 it = BB->begin();
 e = BB->end();
 continue;

}
}

5. Define two global flags to keep a track of horizontal reduction, which feeds into a return:

static bool IsReturn = false;
static bool IsHAdd = false;

6. Allow the vectorization of small trees if they feed into a return. Add the following line to the
isFullyVectorizableTinyTree() function:

if (VectorizableTree.size() == 1 && IsReturn && IsHAdd)return true;

How it works…

Compile the LLVM project after saving the file containing the preceding code, and run the opt tool on
the example IR, as follows:

1. Open the example.ll file and paste the following IR in it:

define i32 @hadd(i32* %a) {
entry:
 %0 = load i32* %a, align 4
 %arrayidx1 = getelementptr inbounds i32* %a, i32 1
 %1 = load i32* %arrayidx1, align 4
 %add = add nsw i32 %0, %1
 %arrayidx2 = getelementptr inbounds i32* %a, i32 2
 %2 = load i32* %arrayidx2, align 4
 %add3 = add nsw i32 %add, %2
 %arrayidx4 = getelementptr inbounds i32* %a, i32 3
 %3 = load i32* %arrayidx4, align 4
 %add5 = add nsw i32 %add3, %3
 ret i32 %add5
}

2. Run the opt tool on example.ll:

$ opt -basicaa -slp-vectorizer -mtriple=aarch64-unknown-linux-gnu -
mcpu=cortex-a57

The output will be vectorized code, like the following:

define i32 @hadd(i32* %a) {

entry:

%0 = bitcast i32* %a to <4 x i32>*
%1 = load <4 x i32>* %0, align 4 %rdx.shuf = shufflevector <4 x i32> %1, <4
x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>

%bin.rdx = add <4 x i32> %1,

%rdx.shuf %rdx.shuf1 = shufflevector <4 x i32>

%bin.rdx, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32
undef> %bin.rdx2 = add <4 x i32> %bin.rdx, %rdx.shuf1

%2 = extractelement <4 x i32> %bin.rdx2, i32 0

ret i32 %2

}

As observed, the code gets vectorized. The matchFlatReduction() function performs a DFS
traversal of the expression and stores all the loads in ReducedVals, while adds are stored in
ReductionOps. After this, the cost of horizontal vectorization is calculated in HAddCost and

compared with scalar cost. It turns out to be profitable. Hence, it vectorizes the expression. This is
handled in the tryToReduce() function, which is already implemented.

See also…
For detailed vectorization concepts, refer to the paper Loop-Aware SLP in GCC by Ira Rosen,
Dorit Nuzman, and Ayal Zaks

Other optimization passes
In this recipe, we will look at some more transformational passes, which are more like of utility
passes. We will look at the strip-debug-symbols pass and the prune-eh pass.

Getting ready…
The opt tool must be installed.

How to do it…
1. Write a test case for checking the strip-debug pass, which strips off the debug symbols from the

test code:

$ cat teststripdebug.ll
@x = common global i32 0 ; <i32*> [#uses=0]

define void @foo() nounwind readnone optsize ssp {
entry:
 tail call void @llvm.dbg.value(metadata i32 0, i64 0, metadata !5,
metadata !{}), !dbg !10
 ret void, !dbg !11
}

declare void @llvm.dbg.value(metadata, i64, metadata, metadata) nounwind
readnone

!llvm.dbg.cu = !{!2}
!llvm.module.flags = !{!13}
!llvm.dbg.sp = !{!0}
!llvm.dbg.lv.foo = !{!5}
!llvm.dbg.gv = !{!8}

!0 = !MDSubprogram(name: "foo", linkageName: "foo", line: 2, isLocal: false,
isDefinition: true, virtualIndex: 6, isOptimized: true, file: !12, scope:
!1, type: !3, function: void ()* @foo)
!1 = !MDFile(filename: "b.c", directory: "/tmp")
!2 = !MDCompileUnit(language: DW_LANG_C89, producer: "4.2.1 (Based on Apple
Inc. build 5658) (LLVM build)", isOptimized: true, emissionKind: 0, file:
!12, enums: !4, retainedTypes: !4)
!3 = !MDSubroutineType(types: !4)
!4 = !{null}
!5 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y", line: 3, scope:
!6, file: !1, type: !7)
!6 = distinct !MDLexicalBlock(line: 2, column: 0, file: !12, scope: !0)
!7 = !MDBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
encoding: DW_ATE_signed)
!8 = !MDGlobalVariable(name: "x", line: 1, isLocal: false, isDefinition:
true, scope: !1, file: !1, type: !7, variable: i32* @x)
!9 = !{i32 0}

!10 = !MDLocation(line: 3, scope: !6)
!11 = !MDLocation(line: 4, scope: !6)
!12 = !MDFile(filename: "b.c", directory: "/tmp")
!13 = !{i32 1, !"Debug Info Version", i32 3}

2. Run the strip-debug-symbols pass by passing the –strip-debug command-line option to the
opt tool:

$ opt -strip-debug teststripdebug.ll -S
; ModuleID = ' teststripdebug.ll'

@x = common global i32 0

; Function Attrs: nounwind optsize readnone ssp
define void @foo() #0 {
entry:
 ret void
}

attributes #0 = { nounwind optsize readnone ssp }

!llvm.module.flags = !{!0}

!0 = metadata !{i32 1, metadata !"Debug Info Version", i32 2}

3. Write a test case for checking the prune-eh pass:

$ cat simpletest.ll
declare void @nounwind() nounwind

define internal void @foo() {
 call void @nounwind()
 ret void
}

define i32 @caller() {
 invoke void @foo()
 to label %Normal unwind label %Except

Normal: ; preds = %0
 ret i32 0

Except: ; preds = %0
 landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
 catch i8* null
 ret i32 1
}
declare i32 @__gxx_personality_v0(...)

4. Run the pass to remove unused exception information by passing the –prune-eh command-line
option to the opt tool:

$ opt -prune-eh -S simpletest.ll

; ModuleID = 'simpletest.ll'

; Function Attrs: nounwind
declare void @nounwind() #0

; Function Attrs: nounwind
define internal void @foo() #0 {
 call void @nounwind()
 ret void
}
; Function Attrs: nounwind
define i32 @caller() #0 {
 call void @foo()
 br label %Normal

Normal: ; preds = %0
 ret i32 0
}

declare i32 @__gxx_personality_v0(...)

attributes #0 = { nounwind }

How it works…
In the first case, where we are running the strip-debug pass, it removes the debug information from
the code, and we can get compact code. This pass must be used only when we are looking for
compact code, as it can delete the names of virtual registers and the symbols for internal global
variables and functions, thus making the source code less readable and making it difficult to reverse
engineer the code.

The part of code that handles this transformation is located in the
llvm/lib/Transforms/IPO/StripSymbols.cpp file, where the
StripDeadDebugInfo::runOnModule function is responsible for stripping the debug information.

The second test is for removing unused exception information using the prune-eh pass, which
implements an interprocedural pass. This walks the call-graph, turning invoke instructions into call
instructions only if the callee cannot throw an exception, and marking functions as nounwind if they
cannot throw the exceptions.

See also
Refer to http://llvm.org/docs/Passes.html#transform-passes for other transformation passes

http://llvm.org/docs/Passes.html#transform-passes

Chapter 6. Target-independent Code
Generator
In this chapter, we will cover the following recipes:

The life of an LLVM IR instruction
Visualizing the LLVM IR CFG using GraphViz
Describing the target using TableGen
Defining an instruction set
Adding a machine code descriptor
Implementing the MachineInstrBuilder class
Implementing the MachineBasicBlock class
Implementing the MachineFunction class
Writing an instruction selector
Legalizing SelectionDAG
Optimizing SelectionDAG
Selecting instructions from the DAG
Scheduling instructions in SelectionDAG

Introduction
After optimizing the LLVM IR, it needs to be converted into machine instructions for execution. The
machine-independent code generator interface gives an abstract layer that helps convert IR into
machine instructions. In this phase, the IR is converted into SelectionDAG (DAG stands for Directed
Acyclic Graph). Various phases work on the nodes of SelectionDAG. This chapter describes the
important phases in target-independent code generation.

The life of an LLVM IR instruction
In previous chapters, we saw how high-level language instructions, statements, logical blocks,
function calls, loops, and so on get transformed into the LLVM IR. Various optimization passes then
process the IR to make it more optimal. The IR generated is in the SSA form and, in abstract format,
almost independent of any high- or low-level language constraints, which facilitates optimization
passes running on it. There might be some optimizations that are target-specific and take place later,
when the IR gets converted into machine instructions.

After we get an optimal LLVM IR, the next phase is to convert it into target-machine-specific
instructions. LLVM uses the SelectionDAG approach to convert the IR into machine instructions. The
Linear IR is converted into SelectionDAG, a DAG that represents instructions as nodes. The SDAG
then goes through various phases:

The SelectionDAG is created out of LLVM IR
Legalizing SDAG nodes
DAG combine optimization
Instruction selection from the target instruction
Scheduling and emitting a machine instruction
Register allocation—SSA destruction, register assignment, and register spilling
Emitting code

All the preceding stages are modularized in LLVM.

C Code to LLVM IR
The first step is to convert the front end language example to LLVM IR. Let's take an example:

 int test (int a, int b, int c) {
 return c/(a+b);
 }

Its LLVM IR will be as follows:

define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 return i32 %div
 }

IR optimization
The IR then goes through various optimization passes, as described in previous chapters. The IR, in
the transformation phase, goes through the InstCombiner::visitSDiv() function in the
InstCombine pass. In that function, it also goes through the SimplifySDivInst() function and tries
to check whether an opportunity exists to further simplify the instruction.

LLVM IR to SelectionDAG
After the IR transformations and optimizations are over, the LLVM IR instruction passes through a
Selection DAG node incarnation. Selection DAG nodes are created by the SelectionDAGBuilder
class. The SelectionDAGBuilder::visit() function call from the SelectionDAGISel class visits
each IR instruction for creating an SDAGNode node. The method that handles an SDiv instruction is
SelectionDAGBuilder::visitSDiv. It requests a new SDNode node from the DAG with
theISD::SDIV opcode, which then becomes a node in the DAG.

SelectionDAG legalization
The SelectionDAG node created may not be supported by the target architecture. In the initial phase
of Selection DAG, these unsupported nodes are called illegal. Before the SelectionDAG machinery
actually emits machine instructions from the DAG nodes, these undergo a few other transformations,
legalization being one of the important phases.

The legalization of SDNode involves type and operation legalization. The target-specific information
is conveyed to the target-independent algorithms via an interface called TargetLowering. This
interface is implemented by the target and, describes how LLVM IR instructions should be lowered to
legal SelectionDAG operations. For instance, x86 lowering is implemented in the
X86TargetLowering interface. The setOperationAction() function specifies whether the ISD
node needs to be expanded or customized by operation legalization. When
SelectionDAGLegalize::LegalizeOp sees the expand flag, it replaces the SDNode node with the
parameter specified in the setOperationAction() call.

Conversion from target-independent DAG to machine
DAG
Now that we have legalized the instruction, SDNode should be converted to MachineSDNode. The
machine instructions are described in a generic table-based fashion in the target description .td files.
Using tablegen, these files are then converted into .inc files that have registers/instructions as
enums to refer to in the C++ code. Instructions can be selected by an automated selector,
SelectCode, or they can be handled specifically by writing a customized Select function in the
SelectionDAGISel class. The DAG node created at this step is a MachineSDNode node, a subclass
of SDNode that holds the information required to construct an actual machine instruction but is still in
the DAG node form.

Scheduling instructions
A machine executes a linear set of instructions. So far, we have had machine instructions that are still
in the DAG form. To convert a DAG into a linear set of instructions, a topological sort of the DAG
can yield the instructions in linear order. However, the linear set of instructions generated might not

result in the most optimized code, and may cause execution delays due to dependencies among
instructions, register pressure, and pipeline stalling issues. Therein comes the concept of scheduling
instructions. Since each target has its own set of registers and customized pipelining of the
instructions, each target has its own hook for scheduling and calculating heuristics to produce
optimized, faster code. After calculating the best possible way to arrange instructions, the scheduler
emits the machine instructions in the machine basic block, and finally destroys the DAG.

Register allocation
The registers allocated are virtual registers after the machine instructions are emitted. Practically, an
infinite number of virtual registers can be allocated, but the actual target has a limited number of
registers. These limited registers need to be allocated efficiently. If this is not done, some registers
have to be spilled onto the memory, and this may result in redundant load/store operations. This will
also result in wastage of CPU cycles, slowing down the execution as well as increasing the memory
footprint.

There are various register allocation algorithms. An important analysis is done when allocating
registers—liveness of variables and live interval analysis. If two variables live in the same interval
(that is, if there exists an interval interference), then they cannot be allocated the same register. An
interference graph is created by analyzing liveness, and a graph coloring algorithm can be used to
allocate the registers. This algorithm, however, takes quadratic time to run. Hence, it may result in
longer compilation time.

LLVM employs a greedy approach for register allocation, where variables that have large live ranges
are allocated registers first. Small ranges fit into the gaps of registers available, resulting in less spill
weight. Spilling is a load-store operation that occurs because no registers are available to be
allocated. Spill weight is the cost of operations involved in the spilling. Sometimes, live range
splitting also takes place to accommodate variables into the registers.

Note that the instructions are in the SSA form before register allocation. Now, the SSA form cannot
exist in the real world because of the limited number of registers available. In some types of
architecture, some instructions require fixed registers.

Code emission
Now that the original high-level code has been translated into machine instructions, the next step is to
emit the code. LLVM does this in two ways; the first is JIT, which directly emits the code to the
memory. The second way is by using the MC framework to emit assembly and object files for all
backend targets.The LLVMTargetMachine::addPassesToEmitFile function is responsible for
defining the sequence of actions required to emit an object file. The actual MI-to-MCInst translation
is done in the EmitInstruction function of the AsmPrinter interface. The static compiler tool, llc,
generates assembly instructions for a target. Object file (or assembly code) emission is done by
implementing the MCStreamer interface.

Visualizing LLVM IR CFG using GraphViz
The LLVM IR control flow graph can be visualized using the GraphViz tool. It gives a visual
depiction of the nodes formed and how the code flow follows in the IR generated. Since the important
data structures in LLVM are graphs, this can be a very useful way to understand the IR flow when
writing a custom pass or studying the behavior of the IR pattern.

Getting ready
1. To install graphviz on Ubuntu, first add its ppa repository:

$ sudo apt-add-repository ppa:dperry/ppa-graphviz-test

2. Update the package repository:

$ sudo apt-get update

3. Install graphviz:

$ sudo apt-get install graphviz

Note

If you get the graphviz : Depends: libgraphviz4 (>= 2.18) but it is not going to
be installed error, run the following commands:

$ sudo apt-get remove libcdt4
$ sudo apt-get remove libpathplan4

Then install graphviz again with the following command:

$ sudo apt-get install graphviz

How to do it…
1. Once the IR has been converted to DAG, it can be viewed in different phases. Create a test.ll

file with the following code:

$ cat test.ll
define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 ret i32 %div
}

2. To display the DAG after it is built, before the first optimization pass, enter the following
command:

$ llc -view-dag-combine1-dags test.ll

The following diagram shows the DAG before the first optimization pass:

3. To display the DAG before legalization, run this command:

$ llc -view-legalize-dags test.ll

Here is a diagram that shows the DAG before the legalization phase:

4. To display the DAG before the second optimization pass, run the following command:

$ llc -view-dag-combine2-dags test.ll

The following diagram shows the DAG before the second optimization pass:

5. To display the DAG before the selection phase, enter this command:

$ llc -view-isel-dags test.ll

Here is a diagram that shows the DAG before the selection phase:

6. To display the DAG before scheduling, run the following command:

$ llc -view-sched-dags test.ll

The following diagram shows the DAG before the scheduling phase:

7. To display the scheduler's dependency graph, run this command:

$ llc -view-sunit-dags test.ll

This diagram shows the scheduler's dependency graph:

Notice the difference in the DAG before and after the legalize phase. The sdiv node has been
converted into an sdivrem node. The x86 target doesn't support the sdiv node but supports the
sdivrem instruction. In a way, the sdiv instruction is illegal for the x86 target. The legalize phase
converted it into an sdivrem instruction, which is supported by the x86 target.

Also note the difference in the DAG before and after the instruction selection (ISel) phase. Target-
machine-independent instructions such as Load are converted into the MOV32rm machine code (which
means, move 32-bit data from the memory to the register). The ISel phase is an important phase that
will be described in later recipes.

Observe the scheduling units for the DAG. Each unit is linked to other units, which shows the
dependency between them. This dependency information is very important for deciding scheduling
algorithms. In the preceding case, scheduling unit 0 (SU0) is dependent on scheduling unit 1 (SU1).
So, the instructions in SU0 cannot be scheduled before the instructions in SU1. SU1 is dependent on
SU2, and so is SU2 on SU3.

See also
For more details on how to view graphs in debug mode, go to

http://llvm.org/docs/ProgrammersManual.html#viewing-graphs-while-debugging-code

http://llvm.org/docs/ProgrammersManual.html#viewing-graphs-while-debugging-code

Describing targets using TableGen
The target architecture can be described in terms of the registers present, the instruction set, and so
on. Describing each of them manually is a tedious task. TableGen is a tool for backend developers
that describes their target machine with a declarative language—*.td. The *.td files will be
converted to enums, DAG-pattern matching functions, instruction encoding/decoding functions, and so
on, which can then be used in other C++ files for coding.

To define registers and the register set in the target description's .td files, tablegen will convert the
intended .td file into .inc files, which will be #include syntax in our .cpp files referring to the
registers.

Getting ready
Let's assume that the sample target machine has four registers, r0-r3; a stack register, sp; and a link
register, lr. These can be specified in the SAMPLERegisterInfo.td file. TableGen provides the
Register class, which can be extended to specify registers.

How to do it
1. Create a new folder in lib/Target named SAMPLE:

$ mkdir llvm_root_directory/lib/Target/SAMPLE

2. Create a new file called SAMPLERegisterInfo.td in the new SAMPLE folder:

$ cd llvm_root_directory/lib/Target/SAMPLE
$ vi SAMPLERegisterInfo.td

3. Define the hardware encoding, namespace, registers, and register class:

class SAMPLEReg<bits<16> Enc, string n> : Register<n> {
 let HWEncoding = Enc;
 let Namespace = "SAMPLE";
}

foreach i = 0-3 in {
 def R#i : R<i, "r"#i >;
}

def SP : SAMPLEReg<13, "sp">;
def LR : SAMPLEReg<14, "lr">;

def GRRegs : RegisterClass<"SAMPLE", [i32], 32,
 (add R0, R1, R2, R3, SP)>;

How it works

TableGen processes this .td file to generate the .inc files, which have registers represented in the
form of enums that can be used in the .cpp files. These .inc files will be generated when we build
the LLVM project.

See also
To get more details on how registers are defined for more advanced architecture, such as the
x86, refer to the X86RegisterInfo.td file located at llvm_source_code/lib/Target/X86/

Defining an instruction set
The instruction set of an architecture varies according to various features present in the architecture.
This recipe demonstrates how instruction sets are defined for the target architecture.

Getting ready
Three things are defined in the instruction target description file: operands, an assembly string, and an
instruction pattern. The specification contains a list of definitions or outputs and a list of uses or
inputs. There can be different operand classes such as the register class, and immediate or more
complex register + imm operands.

Here, a simple add instruction definition is demonstrated. It takes two registers for the input and one
register for the output.

How to do it…
1. Create a new file called SAMPLEInstrInfo.td in the lib/Target/SAMPLE folder:

$ vi SAMPLEInstrInfo.td

2. Specify the operands, assembly string, and instruction pattern for the add instruction between
two register operands:

def ADDrr : InstSAMPLE<(outs GRRegs:$dst),
 (ins GRRegs:$src1, GRRegs:$src2),
 "add $dst, $src1, $src2",
 [(set i32:$dst, (add i32:$src1, i32:$src2))]>;

How it works…
The add register instruction specifies $dst as the resultant operand, which belongs to the general
register type class; the $src1 and $src2 inputs as two input operands, which also belong to the
general register class; and the instruction assembly string as add $dst, $src1, $src2, which is of
the 32-bit integer type.

So, an assembly will be generated for add between two registers, like this:

add r0, r0, r1

This tells us to add the r0 and r1 registers' content and store the result in the r0 register.

See also
For more detailed information on various types of instruction sets for advanced architecture,
such as the x86, refer to the X86InstrInfo.td file located at lib/Target/X86/

Detailed information of how target-specific things are defined will be covered in Chapter 8,
Writing an LLVM Backend. Some concepts might get repetitive, as the preceding recipes were
described in brief to get a glimpse of the target architecture description and get a foretaste of the
upcoming recipes

Adding a machine code descriptor
The LLVM IR has functions, which have basic blocks. Basic blocks in turn have instructions. The next
logical step is to convert those IR abstract blocks into machine-specific blocks. LLVM code is
translated into a machine-specific representation formed from the MachineFunction,
MachineBasicBlock, and MachineInstr instances. This representation contains instructions in their
most abstract form—that is, having an opcode and a series of operands.

How it's done…
Now the LLVM IR instruction has to be represented in the machine instruction. Machine instructions
are instances of the MachineInstr class. This class is an extremely abstract way of representing
machine instructions. In particular, it only keeps track of an opcode number and a set of operands. The
opcode number is a simple unsigned integer that has a meaning only for a specific backend.

Let's look at some important functions defined in the MachineInstr.cpp file:

The MachineInstr constructor:

MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, const
DebugLoc dl, bool NoImp)
 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0),
 Flags(0), AsmPrinterFlags(0),
 NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) {
 // Reserve space for the expected number of operands.
 if (unsigned NumOps = MCID->getNumOperands() +
 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
 CapOperands = OperandCapacity::get(NumOps);
 Operands = MF.allocateOperandArray(CapOperands);
 }

 if (!NoImp)
 addImplicitDefUseOperands(MF);
}

This constructor creates an object of MachineInstr class and adds the implicit operands. It reserves
space for the number of operands specified by the MCInstrDesc class.

One of the important functions is addOperand. It adds the specified operand to the instruction. If it is
an implicit operand, it is added at the end of the operand list. If it is an explicit operand, it is added at
the end of the explicit operand list, as shown here:

void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
 assert(MCID && "Cannot add operands before providing an instr descriptor");
 if (&Op >= Operands && &Op < Operands + NumOperands) {
 MachineOperand CopyOp(Op);
 return addOperand(MF, CopyOp);
 }

 unsigned OpNo = getNumOperands();
 bool isImpReg = Op.isReg() && Op.isImplicit();
 if (!isImpReg && !isInlineAsm()) {
 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
 --OpNo;
 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
 }
 }

#ifndef NDEBUG
 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
 "Trying to add an operand to a machine instr that is already done!");
#endif

 MachineRegisterInfo *MRI = getRegInfo();
 OperandCapacity OldCap = CapOperands;
 MachineOperand *OldOperands = Operands;
 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
 Operands = MF.allocateOperandArray(CapOperands);
 if (OpNo)
 moveOperands(Operands, OldOperands, OpNo, MRI);
 }
 if (OpNo != NumOperands)
 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
 MRI);
 ++NumOperands;
 if (OldOperands != Operands && OldOperands)
 MF.deallocateOperandArray(OldCap, OldOperands);
 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
 NewMO->ParentMI = this;
 if (NewMO->isReg()) {
 NewMO->Contents.Reg.Prev = nullptr;
 NewMO->TiedTo = 0;
 if (MRI)
 MRI->addRegOperandToUseList(NewMO);
 if (!isImpReg) {
 if (NewMO->isUse()) {
 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
 if (DefIdx != -1)
 tieOperands(DefIdx, OpNo);
 }
 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
 NewMO->setIsEarlyClobber(true);
 }
 }
}

The target architecture has some memory operands as well. To add those memory operands, a
function called addMemOperands() is defined:

void MachineInstr::addMemOperand(MachineFunction &MF,

 MachineMemOperand *MO) {
 mmo_iterator OldMemRefs = MemRefs;
 unsigned OldNumMemRefs = NumMemRefs;
 unsigned NewNum = NumMemRefs + 1;
 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
 NewMemRefs[NewNum - 1] = MO;
 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
}

The setMemRefs() function is the primary method for setting up a MachineInstr MemRefs list.

How it works…
The MachineInstr class has an MCID member, with the MCInstrDesc type for describing the
instruction, a uint8_t flags member, a memory reference member (mmo_iterator MemRefs), and a
vector member of the std::vector<MachineOperand> operands. In terms of methods, the
MachineInstr class provides the following:

A basic set of get** and set** functions for information queries, for example, getOpcode(),
getNumOperands(), and so on
Bundle-related operations, for example, isInsideBundle()
Checking whether the instruction has certain properties, for example, isVariadic(),
isReturn(), isCall(), and so on
Machine instruction manipulation, for example, eraseFromParent()
Register-related operations, such as ubstituteRegister(), addRegisterKilled(), and so on
Machine-instruction-creating methods, for example, addOperand(), setDesc(), and so on

Note that, although the MachineInstr class provides machine-instruction-creating methods, a
dedicated function called BuildMI(), based on the MachineInstrBuilder class, is more
convenient.

Implementing the MachineInstrBuilder class
The MachineInstrBuilder class exposes a function called BuildMI(). This function is used to
build machine instructions.

How to do it…
Machine instructions are created by using the BuildMI functions, located in the
include/llvm/CodeGen/MachineInstrBuilder.h file. The BuildMI functions make it easy to
build arbitrary machine instructions.

For example, you can use BuildMI in code snippets for the following purposes:

1. To create a DestReg = mov 42 (rendered in the x86 assembly as mov DestReg, 42)
instruction:

MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);

2. To create the same instruction, but insert it at the end of a basic block:

MachineBasicBlock &MBB = BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);

3. To create the same instruction, but insert it before a specified iterator point:

MachineBasicBlock::iterator MBBI =
BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42)

4. To create a self-looping branch instruction:

BuildMI(MBB, X86::JNE, 1).addMBB(&MBB);

How it works…
The BuildMI() function is required for specifying the number of operands that the machine
instruction will take, which facilitates efficient memory allocation. It is also required to specify
whether operands use values or definitions.

Implementing the MachineBasicBlock class
Similar to basic blocks in the LLVM IR, a MachineBasicBlock class has a set of machine
instructions in sequential order. Mostly, a MachineBasicBlock class maps to a single LLVM IR
basic block. However, there can be cases where multiple MachineBasicBlocks classes map to a
single LLVM IR basic block. The MachineBasicBlock class has a method, called
getBasicBlock(), that returns the IR basic block to which it is mapping.

How to do it…
The following steps show how machine basic blocks are added:

1. The getBasicBlock method will return only the current basic block:

const BasicBlock *getBasicBlock() const { return BB; }

2. The basic blocks have successor as well as predecessor basic blocks. To keep track of those,
vectors are defined as follows:

std::vector<MachineBasicBlock *> Predecessors;
std::vector<MachineBasicBlock *> Successors;

3. An insert function should be added to insert a machine instruction into the basic block:

 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot
insert instruction with bundle flags");

if (I != instr_end() && I->isBundledWithPred()) { MI-
>setFlag(MachineInstr::BundledPred); MI-
>setFlag(MachineInstr::BundledSucc);
}
 return Insts.insert(I, MI);
}

4. A function called SplitCriticalEdge() splits the critical edges from this block to the given
successor block, and returns the newly created block, or null if splitting is not possible. This
function updates the LiveVariables, MachineDominatorTree, and MachineLoopInfo classes:

MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
…
…
…
}

Note

The full implementation of the preceding code is shown in the MachineBasicBlock.cpp file located
at lib/CodeGen/.

How it works…
As listed previously, several representative functions of different categories form the interface
definition of the MachineBasicBlock class. The MachineBasicBlock class keeps a list of machine
instructions such as typedef ilist<MachineInstr> instructions, instructions Insts, and the
original LLVM BB (basic block). It also provides methods for purposes such as these:

BB information querying (for example, getBasicBlock() and setHasAddressTaken())
BB-level manipulation (for example, moveBefore(), moveAfter(), and addSuccessor())
Instruction-level manipulation (for example, push_back(), insertAfter(), and so on)

See also
To see a detailed implementation of the MachineBasicBlock class, go through the
MachineBasicBlock.cpp file located at lib/CodeGen/

Implementing the MachineFunction class
Similar to the LLVM IR FunctionBlock class, a MachineFunction class contains a series of
MachineBasicBlocks classes. These MachineFunction classes map to LLVM IR functions that are
given as input to the instruction selector. In addition to a list of basic blocks, the MachineFunction
class contains the MachineConstantPool, MachineFrameInfo, MachineFunctionInfo, and
MachineRegisterInfo classes.

How to do it…
Many functions are defined in the MachineFunction class, which does specific tasks. There are also
many class member objects that keep information, such as the following:

RegInfo keeps information about each register that is in use in the function:

MachineRegisterInfo *RegInfo;

MachineFrameInfo keeps track of objects allocated on the stack:

MachineFrameInfo *FrameInfo;

ConstantPool keeps track of constants that have been spilled to the memory:

MachineConstantPool *ConstantPool;

JumpTableInfo keeps track of jump tables for switch instructions:

MachineJumpTableInfo *JumpTableInfo;

The list of machine basic blocks in the function:

typedef ilist<MachineBasicBlock> BasicBlockListType;
BasicBlockListType BasicBlocks;

The getFunction function returns the LLVM function that the current machine code represents:

const Function *getFunction() const { return Fn; }

CreateMachineInstr allocates a new MachineInstr class:

MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID,
DebugLoc DL,
bool NoImp = false);

How it works…
The MachineFunction class primarily contains a list of MachineBasicBlock objects (typedef
ilist<MachineBasicBlock> BasicBlockListType; BasicBlockListType BasicBlocks;),
and defines various methods for retrieving information about the machine function and manipulating
the objects in the basic blocks member. A very important point to note is that the MachineFunction
class maintains the control flow graph (CFG) of all basic blocks in a function. Control flow

information in CFG is crucial for many optimizations and analyses. So, it is important to know how
the MachineFunction objects and the corresponding CFGs are constructed.

See also
A detailed implementation of the MachineFunction class can be found in the
MachineFunction.cpp file located at lib/Codegen/

Writing an instruction selector
LLVM uses the SelectionDAG representation to represent the LLVM IR in a low-level data-
dependence DAG for instruction selection. Various simplifications and target-specific optimizations
can be applied to the SelectionDAG representation. This representation is target-independent. It is a
significant, simple, and powerful representation used to implement IR lowering to target instructions.

How to do it…
The following code shows a brief skeleton of the SelectionDAG class, its data members, and various
methods used to set/retrieve useful information from this class. The SelectionDAG class is defined
as follows:

class SelectionDAG {
const TargetMachine &TM;
const TargetLowering &TLI;
const TargetSelectionDAGInfo &TSI;
MachineFunction *MF;
LLVMContext *Context;
CodeGenOpt::Level OptLevel;

SDNode EntryNode;
// Root - The root of the entire DAG.
SDValue Root;

// AllNodes - A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;

// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use

typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
AlignOf<MostAlignedSDNode>::Alignment>
NodeAllocatorType;

BumpPtrAllocator OperandAllocator;

BumpPtrAllocator Allocator;

SDNodeOrdering *Ordering;

public:

struct DAGUpdateListener {

DAGUpdateListener *const Next;

SelectionDAG &DAG;

explicit DAGUpdateListener(SelectionDAG &D)
: Next(D.UpdateListeners), DAG(D) {
DAG.UpdateListeners = this;

}

private:

friend struct DAGUpdateListener;

DAGUpdateListener *UpdateListeners;

void init(MachineFunction &mf);

// Function to set root node of SelectionDAG
const SDValue &setRoot(SDValue N) {
 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
 "DAG root value is not a chain!");
 if (N.getNode())
 checkForCycles(N.getNode());
 Root = N;
 if (N.getNode())
 checkForCycles(this);
 return Root;
}

void Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel);

SDValue getConstant(uint64_t Val, EVT VT, bool isTarget = false);

SDValue getConstantFP(double Val, EVT VT, bool isTarget = false);

SDValue getGlobalAddress(const GlobalValue *GV, DebugLoc DL, EVT VT, int64_t
offset = 0, bool isTargetGA = false,
unsigned char TargetFlags = 0);

SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);

SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
unsigned char TargetFlags = 0);

// Function to return Basic Block corresponding to this MachineBasicBlock
SDValue getBasicBlock(MachineBasicBlock *MBB);

SDValue getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl);

SDValue getExternalSymbol(const char *Sym, EVT VT);

SDValue getExternalSymbol(const char *Sym, DebugLoc dl, EVT VT);

SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags = 0);

// Return the type of the value this SelectionDAG node corresponds // to
SDValue getValueType(EVT);

SDValue getRegister(unsigned Reg, EVT VT);

SDValue getRegisterMask(const uint32_t *RegMask);

SDValue getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label);

SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0, bool isTarget = false,
unsigned char TargetFlags = 0);

SDValue getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT);

SDValue getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT);

SDValue getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT SrcTy);

SDValue getNOT(DebugLoc DL, SDValue Val, EVT VT);

// Function to get SelectionDAG node.
SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N1, SDValue N2);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3);

SDValue getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst, SDValue Src,SDValue
Size, unsigned Align, bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo);

SDValue getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp,
MachinePointerInfo PtrInfo, unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
SDValue Op1, SDValue Op2);

MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT);
MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,

SDValue Op1);

MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
SDValue Op1, SDValue Op2);

void ReplaceAllUsesWith(SDValue From, SDValue Op);

void ReplaceAllUsesWith(SDNode *From, SDNode *To);

void ReplaceAllUsesWith(SDNode *From, const SDValue *To);

bool isBaseWithConstantOffset(SDValue Op) const;

bool isKnownNeverNaN(SDValue Op) const;

bool isKnownNeverZero(SDValue Op) const;

bool isEqualTo(SDValue A, SDValue B) const;

SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);

bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,

unsigned Bytes, int Dist) const;

unsigned InferPtrAlignment(SDValue Ptr) const;

private:

bool RemoveNodeFromCSEMaps(SDNode *N);

void AddModifiedNodeToCSEMaps(SDNode *N);

SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);

SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);

SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps,void
*&InsertPos);

SDNode *UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc loc);

void DeleteNodeNotInCSEMaps(SDNode *N);

void DeallocateNode(SDNode *N);

unsigned getEVTAlignment(EVT MemoryVT) const;

void allnodes_clear();

std::vector<SDVTList> VTList;

std::vector<CondCodeSDNode*> CondCodeNodes;

std::vector<SDNode*> ValueTypeNodes;

std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;

StringMap<SDNode*> ExternalSymbols;

std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
};

How it works…
From the preceding code, it can be seen that the SelectionDAG class provides lots of target-
independent methods to create SDNode of various kinds, and retrieves/computes useful information
from the nodes in the SelectionDAG graph. There are also update and replace methods provided in
the SelectionDAG class. Most of these methods are defined in the SelectionDAG.cpp file. Note that
the SelectionDAG graph and its node type, SDNode, are designed in a way that is capable of storing
both target-independent and target-specific information. For example, the isTargetOpcode() and
isMachineOpcode() methods in the SDNode class can be used to determine whether an opcode is a
target opcode or a machine opcode (target-independent). This is because the same class type,
NodeType, is used to represent both the opcode of a real target and the opcode of a machine
instruction, but with separate ranges.

Legalizing SelectionDAG
A SelectionDAG representation is a target-independent representation of instructions and operands.
However, a target may not always support the instruction or data type represented by SelectionDAG.
In that sense, the initial SelectionDAG graph constructed can be called illegal. The DAG legalize
phase converts the illegal DAG into a legal DAG supported by the target architecture.

A DAG legalize phase can follow two ways to convert unsupported data types into supported data
types—by promoting smaller data types to larger data types, or by truncating larger data types into
smaller ones. For example, suppose that a type of target architecture supports only i32 data types. In
that case, smaller data types such as i8 and i16 need to be promoted to the i32 type. A larger data
type, such as i64, can be expanded to give two i32 data types. The Sign and Zero extensions can be
added so that the result remains consistent in the process of promoting or expanding data types.

Similarly, vector types can be legalized to supported vector types by either splitting the vector into
smaller sized vectors (by extracting the elements from the vector), or by widening smaller vector
types to larger, supported vector types. If vectors are not supported in the target architecture, then
every element of the vector in the IR needs to be extracted in the scalar form.

The legalize phase can also instruct the kind of classes of registers supported for given data.

How to do it…
The SelectionDAGLegalize class consists of various data members, tracking data structures to keep
a track of legalized nodes, and various methods that are used to operate on nodes to legalize them. A
sample snapshot of the legalize phase code from the LLVM trunk shows the basic skeleton of
implementation of the legalize phase, as follows:

namespace {
class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {

const TargetMachine &TM;

const TargetLowering &TLI;

SelectionDAG &DAG;

SelectionDAG::allnodes_iterator LegalizePosition;

// LegalizedNodes - The set of nodes which have already been legalized.
SmallPtrSet<SDNode *, 16> LegalizedNodes;

public:
explicit SelectionDAGLegalize(SelectionDAG &DAG);
void LegalizeDAG();

private:

void LegalizeOp(SDNode *Node);

SDValue OptimizeFloatStore(StoreSDNode *ST);

// Legalize Load operations
void LegalizeLoadOps(SDNode *Node);

// Legalize Store operations
void LegalizeStoreOps(SDNode *Node);

// Main legalize function which operates on Selection DAG node
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
// A target node which is constant need not be legalized further
 if (Node->getOpcode() == ISD::TargetConstant)
 return;

 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
TargetLowering::TypeLegal && "Unexpected illegal type!");

 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 assert((TLI.getTypeAction(*DAG.getContext(),
 Node->getOperand(i).getValueType()) == TargetLowering::TypeLegal ||
 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && "Unexpected
illegal type!");

 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
 bool SimpleFinishLegalizing = true;

// Legalize based on instruction opcode
 switch (Node->getOpcode()) {
 case ISD::INTRINSIC_W_CHAIN:
 case ISD::INTRINSIC_WO_CHAIN:
 case ISD::INTRINSIC_VOID:
 case ISD::STACKSAVE:
 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
 break;
…
…
}

How it works…
Many function members of the SelectionDAGLegalize class, such as LegalizeOp, rely on target-
specific information provided by the const TargetLowering &TLI member (other function
members may also depend on the const TargetMachine &TM member) in the
SelectionDAGLegalize class. Let's take an example to demonstrate how legalization works.

There are two types of legalization: type legalization and instruction legalization. Let's first see how
type legalization works. Create a test.ll file using the following commands:

$ cat test.ll
define i64 @test(i64 %a, i64 %b, i64 %c) {
 %add = add nsw i64 %a, %b
 %div = sdiv i64 %add, %c
 ret i64 %div
}

The data type in this case is i64. For the x86 target, which supports only the 32-bit data type, the data
type you just saw is illegal. To run the preceding code, the data type has to be converted to i32. This
is done by the DAG Legalization phase.

To view the DAG before type legalization, run the following command line:

$ llc -view-dag-combine1-dags test.ll

The following figure shows the DAG before type legalization:

To see DAG after type legalization, enter the following command line:

$ llc -view-dag-combine2-dags test.ll

The following figure shows the DAG after type legalization:

On observing the DAG nodes carefully, you can see that every operation before legalization had the
i64 type. This was because the IR had the data type i64—one-to-one mapping from the IR instruction
to the DAG nodes. However, the target x86 machine supports only the i32 type (32-bit integer type).
The DAG legalize phase converts unsupported i64 types to supported i32 types. This operation is
called expanding—splitting larger types into smaller types. For example, in a target accepting only
i32 values, all i64 values are broken down to pairs of i32 values. So, after legalization, you can see
that all the operations now have i32 as the data type.

Let's see how instructions are legalized; create a test.ll file using the following commands:

$ cat test.ll
define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 ret i32 %div
}

To view the DAG before legalization, enter the following command:

$ llc –view-dag-combine1-dags test.ll

The following figure shows the DAG before legalization:

To view the DAG after legalization, enter the following command:

$ llc -view-dag-combine2-dags test.ll

The following figure shows the DAG after the legalization phase:

The DAG, before instruction legalization, consists of sdiv instructions. Now, the x86 target does not
support the sdiv instruction, hence it is illegal for the target. It does, however, support the sdivrem
instruction. So, the legalization phase involves conversion of the sdiv instruction to the sdivrem
instruction, as visible in the preceding two DAGs.

Optimizing SelectionDAG
A SelectionDAG representation shows data and instructions in the form of nodes. Similar to the
InstCombine pass in the LLVM IR, these nodes can be combined and optimized to form a minimized
SelectionDAG. But, it's not just a DAGCombine operation that optimizes the SelectionDAG. A
DAGLegalize phase may generate some unnecessary DAG nodes, which are cleaned up by
subsequent runs of the DAG optimization pass. This finally represents the SelectionDAG in a more
simple and elegant way.

How to do it…
There are lots and lots of function members (most of them are named like this: visit**()) provided
in the DAGCombiner class to perform optimizations by folding, reordering, combining, and modifying
SDNode nodes. Note that, from the DAGCombiner constructor, we can guess that some optimizations
require alias analysis information:

class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations;
bool LegalTypes;

SmallPtrSet<SDNode*, 64> WorkListContents;
SmallVector<SDNode*, 64> WorkListOrder;

AliasAnalysis &AA;

// Add SDnodes users to worklist
void AddUsersToWorkList(SDNode *N) {
 for (SDNode::use_iterator UI = N->use_begin(),
 UE = N->use_end(); UI != UE; ++UI)
 AddToWorkList(*UI);
}
SDValue visit(SDNode *N);

public:

void AddToWorkList(SDNode *N) {
 WorkListContents.insert(N);
 WorkListOrder.push_back(N);
}

void removeFromWorkList(SDNode *N) {
 WorkListContents.erase(N);
}

// SDnode combine operations.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,

bool AddTo = true);

SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
 return CombineTo(N, &Res, 1, AddTo);
}

SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
 SDValue To[] = { Res0, Res1 };
 return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);

private:

bool SimplifyDemandedBits(SDValue Op) {
 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
 APInt Demanded = APInt::getAllOnesValue(BitWidth);
 return SimplifyDemandedBits(Op, Demanded);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);

bool CombineToPreIndexedLoadStore(SDNode *N);

bool CombineToPostIndexedLoadStore(SDNode *N);

void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);

SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);

SDValue SExtPromoteOperand(SDValue Op, EVT PVT);

SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);

SDValue PromoteIntBinOp(SDValue Op);

SDValue PromoteIntShiftOp(SDValue Op);

SDValue PromoteExtend(SDValue Op);

bool PromoteLoad(SDValue Op);

void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
ISD::NodeType ExtType);

SDValue combine(SDNode *N);

// Various visit functions operating on instructions represented
// by SD node. Similar to instruction combining at IR level.
SDValue visitTokenFactor(SDNode *N);

SDValue visitMERGE_VALUES(SDNode *N);

SDValue visitADD(SDNode *N);
SDValue visitSUB(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitMUL(SDNode *N);

public:

DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
: DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}

// Selection DAG transformation for following ops
SDValue DAGCombiner::visitMUL(SDNode *N) {
 SDValue N0 = N->getOperand(0);
 SDValue N1 = N->getOperand(1);
 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 EVT VT = N0.getValueType();
 if (VT.isVector()) {
 SDValue FoldedVOp = SimplifyVBinOp(N);
 if (FoldedVOp.getNode()) return FoldedVOp;
 }
 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
 return DAG.getConstant(0, VT);

 if (N0C && N1C)
 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);

 if (N0C && !N1C)
 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);

 if (N1C && N1C->isNullValue())
 return N1;

 if (N1C && N1C->isAllOnesValue())
 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT),
N0);
 if (N1C && N1C->getAPIntValue().isPowerOf2())
 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
 DAG.getConstant(N1C->getAPIntValue().logBase2(),
 getShiftAmountTy(N0.getValueType())));

 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, DAG.getConstant(0, VT),
 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
 DAG.getConstant(Log2Val, getShiftAmountTy(N0.getValueType()))));
 }

 if (N1C && N0.getOpcode() == ISD::SHL &&
 isa<ConstantSDNode>(N0.getOperand(1))) {

 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N1,
N0.getOperand(1));
 AddToWorkList(C3.getNode());
 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
 N0.getOperand(0), C3);
 }

 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
 N0.getNode()->hasOneUse()) {
 Sh = N0; Y = N1;
 } else if (N1.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N1.getOperand(1))
&&
 N1.getNode()->hasOneUse()) {
 Sh = N1; Y = N0;
 }
 if (Sh.getNode()) {
 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, Sh.getOperand(0),
Y);
 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
 Mul, Sh.getOperand(1));
 }
 }
 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
 isa<ConstantSDNode>(N0.getOperand(1)))
 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, DAG.getNode(ISD::MUL,
N0.getDebugLoc(),
 VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
N0.getOperand(1), N1));

 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);

 if (RMUL.getNode() != 0) return RMUL;
 return SDValue();
}

How it works…
As seen in the preceding code, some DAGCombine passes search for a pattern and then fold the
patterns into a single DAG. This basically reduces the number of DAGs, while lowering DAGs. The
result is an optimized SelectionDAG class.

See also
For a more detailed implementation of the optimized SelectionDAG class, see the
DAGCombiner.cpp file located at lib/CodeGen/SelectionDAG/

Selecting instruction from the DAG
After legalization and DAG combination, the SelectionDAG representation is in the optimized phase.
However, the instructions represented are still target-independent and need to be mapped on target-
specific instructions. The instruction selection phase takes the target-independent DAG nodes as the
input, matches patterns in them, and gives the output DAG nodes, which are target-specific.

The TableGen DAG instruction selector generator reads the instruction patterns from the .td file, and
automatically builds parts of the pattern matching code.

How to do it…
SelectionDAGISel is the common base class used for pattern-matching instruction selectors that are
based on SelectionDAG. It inherits the MachineFunctionPass class. It has various functions used to
determine the legality and profitability of operations such as folding. The basic skeleton of this class
is as follows:

class SelectionDAGISel : public MachineFunctionPass {
public:
const TargetMachine &TM;
const TargetLowering &TLI;
const TargetLibraryInfo *LibInfo;
FunctionLoweringInfo *FuncInfo;
MachineFunction *MF;
MachineRegisterInfo *RegInfo;
SelectionDAG *CurDAG;
SelectionDAGBuilder *SDB;
AliasAnalysis *AA;
GCFunctionInfo *GFI;
CodeGenOpt::Level OptLevel;
static char ID;

explicit SelectionDAGISel(const TargetMachine &tm,
CodeGenOpt::Level OL = CodeGenOpt::Default);

virtual ~SelectionDAGISel();

const TargetLowering &getTargetLowering() { return TLI; }

virtual void getAnalysisUsage(AnalysisUsage &AU) const;

virtual bool runOnMachineFunction(MachineFunction &MF);

virtual void EmitFunctionEntryCode() {}

virtual void PreprocessISelDAG() {}

virtual void PostprocessISelDAG() {}

virtual SDNode *Select(SDNode *N) = 0;

virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
 return true;
}

virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;

static bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
CodeGenOpt::Level OptLevel,
bool IgnoreChains = false);

enum BuiltinOpcodes {
OPC_Scope,
OPC_RecordNode,
OPC_CheckOpcode,
OPC_SwitchOpcode,
OPC_CheckFoldableChainNode,
OPC_EmitInteger,
OPC_EmitRegister,
OPC_EmitRegister2,
OPC_EmitConvertToTarget,
OPC_EmitMergeInputChains,
};

static inline int getNumFixedFromVariadicInfo(unsigned Flags) {
 return ((Flags&OPFL_VariadicInfo) >> 4)-1;
}

protected:
// DAGSize - Size of DAG being instruction selected.
unsigned DAGSize;

void ReplaceUses(SDValue F, SDValue T) {
 CurDAG->ReplaceAllUsesOfValueWith(F, T);
}

void ReplaceUses(const SDValue *F, const SDValue *T, unsigned Num) {
 CurDAG->ReplaceAllUsesOfValuesWith(F, T, Num);
}

void ReplaceUses(SDNode *F, SDNode *T) {
 CurDAG->ReplaceAllUsesWith(F, T);
}

void SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops);

public:
bool CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const;

bool CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const;

virtual bool CheckPatternPredicate(unsigned PredNo) const {
 llvm_unreachable("Tblgen should generate the implementation of this!");
}

virtual bool CheckNodePredicate(SDNode *N, unsigned PredNo) const {
 llvm_unreachable("Tblgen should generate the implementation of this!");
}

private:

SDNode *Select_INLINEASM(SDNode *N);

SDNode *Select_UNDEF(SDNode *N);

void CannotYetSelect(SDNode *N);

void DoInstructionSelection();

SDNode *MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo);

void PrepareEHLandingPad();

void SelectAllBasicBlocks(const Function &Fn);

bool TryToFoldFastISelLoad(const LoadInst *LI, const Instruction *FoldInst,
FastISel *FastIS);

void FinishBasicBlock();

void SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End,
bool &HadTailCall);

void CodeGenAndEmitDAG();

void LowerArguments(const BasicBlock *BB);

void ComputeLiveOutVRegInfo();
 ScheduleDAGSDNodes *CreateScheduler();
};

How it works…
The instruction selection phase involves converting target-independent instructions to target-specific
instructions. The TableGen class helps select target-specific instructions. This phase basically
matches target-independent input nodes, which gives an output consisting of target-supported nodes.

The CodeGenAndEmitDAG() function calls the DoInstructionSelection() function, which visits
each DAG node and calls the Select() function for each node, like this:

SDNode *ResNode = Select(Node);

The Select() function is an abstract method implemented by the targets. The x86 target implements it
in the X86DAGToDAGISel::Select() function. The X86DAGToDAGISel::Select() function
intercepts some nodes for manual matching, but delegates the bulk of the work to the
X86DAGToDAGISel::SelectCode() function.

The X86DAGToDAGISel::SelectCode function is autogenerated by TableGen. It contains the matcher
table, followed by a call to the generic SelectionDAGISel::SelectCodeCommon() function,
passing it the table.

For example:

$ cat test.ll
define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 ret i32 %div
}

To see the DAG before instruction selection, enter the following command line:

$ llc –view-isel-dags test.ll

The following figure shows the DAG before the instruction selection:

To see how DAG looks like after the instruction selection, enter the following command:

$ llc –view-sched-dags test.ll

The following figure shows the DAG after the instruction selection:

As seen, the Load operation is converted into the MOV32rm machine code by the instruction selection
phase.

See also
To see the detailed implementation of the instruction selection, take a look at the

SelectionDAGISel.cpp file located at lib/CodeGen/SelectionDAG/

Scheduling instructions in SelectionDAG
So far, we have had SelectionDAG nodes consisting of target-supported instructions and operands.
However, the code is still in DAG representation. The target architecture executes instructions in
sequential form. So, the next logical step is to schedule the SelectionDAG nodes.

A scheduler assigns the order of execution of instructions from the DAG. In this process, it takes into
account various heuristics, such as register pressure, to optimize the execution order of instructions
and to minimize latencies in instruction execution. After assigning the order of execution to the DAG
nodes, the nodes are converted into a list of MachineInstrs and the SelectionDAG nodes are
destroyed.

How to do it…
There are several basic structures that are defined in the ScheduleDAG.h file and implemented in the
ScheduleDAG.cpp file. The ScheduleDAG class is a base class for other schedulers to inherit, and it
provides only graph-related manipulation operations such as an iterator, DFS, topological sorting,
functions for moving nodes around, and so on:

class ScheduleDAG {
public:
 const TargetMachine &TM; // Target processor
 const TargetInstrInfo *TII; // Target instruction
 const TargetRegisterInfo *TRI; // Target processor register info
 MachineFunction &MF; // Machine function
 MachineRegisterInfo &MRI; // Virtual/real register map
 std::vector<SUnit> SUnits; // The scheduling units.
 SUnit EntrySU; // Special node for the region entry.
 SUnit ExitSU; // Special node for the region exit.

 explicit ScheduleDAG(MachineFunction &mf);

 virtual ~ScheduleDAG();

 void clearDAG();

const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
 if (SU->isInstr()) return &SU->getInstr()->getDesc();
 return getNodeDesc(SU->getNode());
}

virtual void dumpNode(const SUnit *SU) const = 0;

private:

const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
};

class SUnitIterator : public std::iterator<std::forward_iterator_tag,

SUnit, ptrdiff_t> {
};

template <> struct GraphTraits<SUnit*> {
 typedef SUnit NodeType;
 typedef SUnitIterator ChildIteratorType;
 static inline NodeType *getEntryNode(SUnit *N) {
 return N;
 }
 static inline ChildIteratorType child_begin(NodeType *N) {
 return SUnitIterator::begin(N);
 }

static inline ChildIteratorType child_end(NodeType *N) {
 return SUnitIterator::end(N);
 }
};

template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
…};

// Topological sorting of DAG to linear set of instructions
class ScheduleDAGTopologicalSort {
 std::vector<SUnit> &SUnits;
 SUnit *ExitSU;
 std::vector<int> Index2Node;
 std::vector<int> Node2Index;
 BitVector Visited;
// DFS to be run on DAG to sort topologically
 void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);

 void Shift(BitVector& Visited, int LowerBound, int UpperBound);

 void Allocate(int n, int index);

public:

 ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);

 void InitDAGTopologicalSorting();

 bool IsReachable(const SUnit *SU, const SUnit *TargetSU);

 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);

 void AddPred(SUnit *Y, SUnit *X);

 void RemovePred(SUnit *M, SUnit *N);

 typedef std::vector<int>::iterator iterator;

 typedef std::vector<int>::const_iterator const_iterator;

 iterator begin() { return Index2Node.begin(); }

 const_iterator begin() const { return Index2Node.begin(); }

 iterator end() { return Index2Node.end();}}

How it works…
The scheduling algorithm implements the scheduling of instructions in the SelectionDAG class,
which involves a variety of algorithms such as topological sorting, depth-first searching, manipulating
functions, moving nodes, and iterating over a list of instructions. It takes into account various
heuristics, such as register pressure, spilling cost, live interval analysis, and so on to determine the
best possible scheduling of instructions.

See also
For a detailed implementation of scheduling instructions, see the ScheduleDAGSDNodes.cpp,
ScheduleDAGSDNodes.h, ScheduleDAGRRList.cpp, ScheduleDAGFast.cpp, and
ScheduleDAGVLIW.cpp files located in the lib/CodeGen/SelectionDAG folder

Chapter 7. Optimizing the Machine Code
In this chapter, we will cover the following recipes:

Eliminating common subexpressions from machine code
Analyzing live intervals
Allocating registers
Inserting the prologue-epilogue code
Code emission
Tail call optimization
Sibling call optimization

Introduction
The machine code generated so far is yet to be assigned real target architecture registers. The
registers seen so far have been virtual registers, which are infinite in number. The machine code
generated is in the SSA form. However, the target registers are limited in number. Hence, register
allocation algorithms require a lot of heuristic calculations to allocate registers in an optimal way.

But, before register allocation, there exists opportunities for code optimization. The machine code
being in the SSA form also makes it easy to apply optimizing algorithms. The algorithms for some
optimizing techniques, such as machine dead code elimination and machine common subexpression
elimination, are almost the same as in the LLVM IR. The difference lies in the constraints to be
checked.

Here, one of the machine code optimization techniques implemented in the LLVM trunk code
repository—machine CSE— will be discussed so that you can understand how algorithms are
implemented for machine code.

Eliminating common subexpression from
machine code
The aim of the CSE algorithm is to eliminate common subexpressions to make machine code compact
and remove unnecessary, duplicate code. Let's look at the code in the LLVM trunk to understand how
it is implemented. The detailed code is in the lib/CodeGen/MachineCSE.cpp file.

How to do it…
1. The MachineCSE class runs on a machine function, and hence it should inherit the

MachineFunctionPass class. It has various members, such as TargetInstructionInfo,
which is used to get information about the target instruction (used in performing CSE);
TargetRegisterInfo, which is used to get information about the target register (whether it
belongs to a reserved register class, or to more such similar classes; and
MachineDominatorTree, which is used to get information about the dominator tree for the
machine block:

class MachineCSE : public MachineFunctionPass {
 const TargetInstrInfo *TII;
 const TargetRegisterInfo *TRI;
 AliasAnalysis *AA;
 MachineDominatorTree *DT;
 MachineRegisterInfo *MRI;

2. The constructor for this class is defined as follows, which initializes the pass:

public:
 static char ID; // Pass identification
 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
 }

3. The getAnalysisUsage() function determines which passes will run before this pass to get
statistics that can be used in this pass:

 void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.setPreservesCFG();
 MachineFunctionPass::getAnalysisUsage(AU);
 AU.addRequired<AliasAnalysis>();
 AU.addPreservedID(MachineLoopInfoID);
 AU.addRequired<MachineDominatorTree>();
 AU.addPreserved<MachineDominatorTree>();
 }

4. Declare some helper functions in this pass to check for simple copy propagation and trivially
dead definitions, check for the liveness of physical registers and their definition uses, and so on:

 private:
…..

…..

bool PerformTrivialCopyPropagation(MachineInstr *MI,
 MachineBasicBlock *MBB);

bool isPhysDefTriviallyDead(unsigned Reg,
 MachineBasicBlock::const_iterator I,
 MachineBasicBlock::const_iterator E) const;

bool hasLivePhysRegDefUses(const MachineInstr *MI,
 const MachineBasicBlock *MBB,
 SmallSet<unsigned,8> &PhysRefs,
 SmallVectorImpl<unsigned> &PhysDefs,
 bool &PhysUseDef) const;

bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 SmallSet<unsigned,8> &PhysRefs,
SmallVectorImpl<unsigned> &PhysDefs,
 bool &NonLocal) const;

5. Some more helper functions help to determine the legality and profitability of the expression
being a CSE candidate:

 bool isCSECandidate(MachineInstr *MI);
 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
 MachineInstr *CSMI, MachineInstr *MI);

Actual CSE performing function
 bool PerformCSE(MachineDomTreeNode *Node);

Let's look at the actual implementation of a CSE function:

1. The runOnMachineFunction() function is called first as the pass runs:

bool MachineCSE::runOnMachineFunction(MachineFunction &MF){
 if (skipOptnoneFunction(*MF.getFunction()))
 return false;

 TII = MF.getSubtarget().getInstrInfo();
 TRI = MF.getSubtarget().getRegisterInfo();
 MRI = &MF.getRegInfo();
 AA = &getAnalysis<AliasAnalysis>();
 DT = &getAnalysis<MachineDominatorTree>();
 return PerformCSE(DT->getRootNode());
}

2. The PerformCSE() function is called next. It takes the root node of the DomTree, performs a
DFS walk on the DomTree (starting from the root node), and populates a work list consisting of
the nodes of the DomTree. After the DFS traverses through the DomTree, it processes the
MachineBasicBlock class corresponding to each node in the work list:

bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
 SmallVector<MachineDomTreeNode*, 32> Scopes;

 SmallVector<MachineDomTreeNode*, 8> WorkList;
 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;

 CurrVN = 0;
// DFS to populate worklist
 WorkList.push_back(Node);
 do {
 Node = WorkList.pop_back_val();
 Scopes.push_back(Node);
 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 unsigned NumChildren = Children.size();
 OpenChildren[Node] = NumChildren;
 for (unsigned i = 0; i != NumChildren; ++i) {
 MachineDomTreeNode *Child = Children[i];
 WorkList.push_back(Child);
 }
 } while (!WorkList.empty());

 // perform CSE.
 bool Changed = false;
 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 MachineDomTreeNode *Node = Scopes[i];
 MachineBasicBlock *MBB = Node->getBlock();
 EnterScope(MBB);
 Changed |= ProcessBlock(MBB);
 ExitScopeIfDone(Node, OpenChildren);
 }

 return Changed;
}

3. The next important function is the ProcessBlock() function, which acts on the machine basic
block. The instructions in the MachineBasicBlock class are iterated and checked for legality
and profitability if they can be a CSE candidate:

bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
 bool Changed = false;

 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 SmallVector<unsigned, 2> ImplicitDefsToUpdate;

// Iterate over each Machine instructions in the MachineBasicBlock
 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
) {
 MachineInstr *MI = &*I;
 ++I;

// Check if this can be a CSE candidate.
 if (!isCSECandidate(MI))
 continue;

 bool FoundCSE = VNT.count(MI);
 if (!FoundCSE) {

 // Using trivial copy propagation to find more CSE opportunities.
 if (PerformTrivialCopyPropagation(MI, MBB)) {
 Changed = true;

 // After coalescing MI itself may become a copy.
 if (MI->isCopyLike())
 continue;

 // Try again to see if CSE is possible.
 FoundCSE = VNT.count(MI);
 }
 }

 bool Commuted = false;
 if (!FoundCSE && MI->isCommutable()) {
 MachineInstr *NewMI = TII->commuteInstruction(MI);
 if (NewMI) {
 Commuted = true;
 FoundCSE = VNT.count(NewMI);
 if (NewMI != MI) {
 // New instruction. It doesn't need to be kept.
 NewMI->eraseFromParent();
 Changed = true;
 } else if (!FoundCSE)
 // MI was changed but it didn't help, commute it back!
 (void)TII->commuteInstruction(MI);
 }
 }

 // If the instruction defines physical registers and the values *may* be
 // used, then it's not safe to replace it with a common subexpression.
 // It's also not safe if the instruction uses physical registers.
 bool CrossMBBPhysDef = false;
 SmallSet<unsigned, 8> PhysRefs;
 SmallVector<unsigned, 2> PhysDefs;
 bool PhysUseDef = false;

// Check if this instruction has been marked for CSE. Check if it is using
physical register, if yes then mark as non-CSE candidate
 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
 PhysDefs, PhysUseDef)) {
 FoundCSE = false;
…
…
 }

 if (!FoundCSE) {
 VNT.insert(MI, CurrVN++);
 Exps.push_back(MI);
 continue;
 }

 // Finished job of determining if there exists a common subexpression.
 // Found a common subexpression, eliminate it.

 unsigned CSVN = VNT.lookup(MI);
 MachineInstr *CSMI = Exps[CSVN];
 DEBUG(dbgs() << "Examining: " << *MI);
 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);

 // Check if it's profitable to perform this CSE.
 bool DoCSE = true;
 unsigned NumDefs = MI->getDesc().getNumDefs() +
 MI->getDesc().getNumImplicitDefs();

 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
 MachineOperand &MO = MI->getOperand(i);
 if (!MO.isReg() || !MO.isDef())
 continue;
 unsigned OldReg = MO.getReg();
 unsigned NewReg = CSMI->getOperand(i).getReg();

 // Go through implicit defs of CSMI and MI, if a def is not dead at
MI,
 // we should make sure it is not dead at CSMI.
 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
 ImplicitDefsToUpdate.push_back(i);
 if (OldReg == NewReg) {
 --NumDefs;
 continue;
 }

 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
 TargetRegisterInfo::isVirtualRegister(NewReg) &&
 "Do not CSE physical register defs!");

 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
 DoCSE = false;
 break;
 }

 // Don't perform CSE if the result of the old instruction cannot exist
 // within the register class of the new instruction.
 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
 if (!MRI->constrainRegClass(NewReg, OldRC)) {
 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
 DoCSE = false;
 break;
 }

 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 --NumDefs;
 }

 // Actually perform the elimination.
 if (DoCSE) {
 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);

 MRI->clearKillFlags(CSEPairs[i].second);
 }

 // Go through implicit defs of CSMI and MI, if a def is not dead at
MI,
 // we should make sure it is not dead at CSMI.
 for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
 CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);

 if (CrossMBBPhysDef) {
 // Add physical register defs now coming in from a predecessor to
MBB
 // livein list.
 while (!PhysDefs.empty()) {
 unsigned LiveIn = PhysDefs.pop_back_val();
 if (!MBB->isLiveIn(LiveIn))
 MBB->addLiveIn(LiveIn);
 }
 ++NumCrossBBCSEs;
 }

 MI->eraseFromParent();
 ++NumCSEs;
 if (!PhysRefs.empty())
 ++NumPhysCSEs;
 if (Commuted)
 ++NumCommutes;
 Changed = true;
 } else {
 VNT.insert(MI, CurrVN++);
 Exps.push_back(MI);
 }
 CSEPairs.clear();
 ImplicitDefsToUpdate.clear();
 }

 return Changed;
}

4. Let's also look into the legality and profitability functions to determine the CSE candidates:

bool MachineCSE::isCSECandidate(MachineInstr *MI) {
// If Machine Instruction is PHI, or inline ASM or implicit defs, it is not
a candidate for CSE.

 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill()
||
 MI->isInlineAsm() || MI->isDebugValue())
 return false;

 // Ignore copies.
 if (MI->isCopyLike())
 return false;

 // Ignore instructions that we obviously can't move.

 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || MI-
>hasUnmodeledSideEffects())
 return false;

 if (MI->mayLoad()) {
 // Okay, this instruction does a load. As a refinement, we allow the
target
 // to decide whether the loaded value is actually a constant. If so, we
can
 // actually use it as a load.
 if (!MI->isInvariantLoad(AA))
 return false;
 }
 return true;
}

5. The profitability function is written as follows:

bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
 MachineInstr *CSMI, MachineInstr *MI) {

 // If CSReg is used at all uses of Reg, CSE should not increase register
 // pressure of CSReg.
 bool MayIncreasePressure = true;
 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
 TargetRegisterInfo::isVirtualRegister(Reg)) {
 MayIncreasePressure = false;
 SmallPtrSet<MachineInstr*, 8> CSUses;
 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 CSUses.insert(&MI);
 }
 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 if (!CSUses.count(&MI)) {
 MayIncreasePressure = true;
 break;
 }
 }
 }
 if (!MayIncreasePressure) return true;

 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or
in
 // an immediate predecessor. We don't want to increase register pressure
and
 // end up causing other computation to be spilled.
 if (TII->isAsCheapAsAMove(MI)) {
 MachineBasicBlock *CSBB = CSMI->getParent();
 MachineBasicBlock *BB = MI->getParent();
 if (CSBB != BB && !CSBB->isSuccessor(BB))
 return false;
 }

 // Heuristics #2: If the expression doesn't not use a vr and the only use
 // of the redundant computation are copies, do not cse.
 bool HasVRegUse = false;

 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 const MachineOperand &MO = MI->getOperand(i);
 if (MO.isReg() && MO.isUse() &&
 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 HasVRegUse = true;
 break;
 }
 }
 if (!HasVRegUse) {
 bool HasNonCopyUse = false;
 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 // Ignore copies.
 if (!MI.isCopyLike()) {
 HasNonCopyUse = true;
 break;
 }
 }
 if (!HasNonCopyUse)
 return false;
 }

 // Heuristics #3: If the common subexpression is used by PHIs, do not
reuse
 // it unless the defined value is already used in the BB of the new use.
 bool HasPHI = false;
 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 HasPHI |= MI.isPHI();
 CSBBs.insert(MI.getParent());
 }

 if (!HasPHI)
 return true;
 return CSBBs.count(MI->getParent());
}

How it works…
The MachineCSE pass runs on a machine function. It gets the DomTree information and then traverses
the DomTree in the DFS way, creating a work list of nodes that are essentially MachineBasicBlocks.
It then processes each block for CSE. In each block, it iterates through all the instructions and checks
whether any instruction is a candidate for CSE. Then it checks whether it is profitable to eliminate the
identified expression. Once it has found that the identified CSE is profitable to eliminate, it eliminates
the MachineInstruction class from the MachineBasicBlock class. It also performs a simple copy
propagation of the machine instruction. In some cases, the MachineInstruction may not be a
candidate for CSE in its initial run, but may become one after copy propagation.

See more
To see more machine code optimization in the SSA form, look into the implementation of the machine

dead code elimination pass in the lib/CodeGen/DeadMachineInstructionElim.cpp file.

Analyzing live intervals
Further on in this chapter, we will be looking into register allocation. Before we head to that,
however, you must understand the concepts of live variable and live interval. By live intervals, we
mean the range in which a variable is live, that is, from the point where a variable is defined to its
last use. For this, we need to calculate the set of registers that are immediately dead after the
instruction (the last use of a variable), and the set of registers that are used by the instruction but not
after the instruction. We calculate live variable information for each virtual register and physical
register in the function. Using SSA to sparsely compute the lifetime information for the virtual
registers enables us to only track the physical registers within a block. Before register allocation,
LLVM assumes that physical registers are live only within a single basic block. This enables it to
perform a single, local analysis to resolve physical register lifetimes within each basic block. After
performing the live variable analysis, we have the information required for performing live interval
analysis and building live intervals. For this, we start numbering the basic block and machine
instructions. After that live-in values, typically arguments in registers are handled. Live intervals for
virtual registers are computed for some ordering of the machine instructions (1, N). A live interval is
an interval (i, j) for which a variable is live, where 1 >= i >= j > N.

In this recipe, we will take a sample program and see how we can list down the live intervals for that
program. We will look at how LLVM works to calculate these intervals.

Getting ready
To get started, we need a piece of test code on which we will be performing live interval analysis.
For simplicity, we will use C code and then convert it into LLVM IR:

1. Write a test program with an if - else block:

$ cat interval.c
void donothing(int a) {
 return;
}

int func(int i) {
 int a = 5;
 donothing(a);
 int m = a;
 donothing(m);
 a = 9;
 if (i < 5) {
 int b = 3;
 donothing(b);
 int z = b;
 donothing(z);
 }
 else {
 int k = a;

 donothing(k);
 }

 return m;
}

2. Use Clang to convert the C code into IR, and then view the generated IR using the cat command:

$ clang -cc1 -emit-llvm interval.c

$ cat interval.ll
; ModuleID = 'interval.c'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind
define void @donothing(i32 %a) #0 {
 %1 = alloca i32, align 4
 store i32 %a, i32* %1, align 4
 ret void
}

; Function Attrs: nounwind
define i32 @func(i32 %i) #0 {
 %1 = alloca i32, align 4
 %a = alloca i32, align 4
 %m = alloca i32, align 4
 %b = alloca i32, align 4
 %z = alloca i32, align 4
 %k = alloca i32, align 4
 store i32 %i, i32* %1, align 4
 store i32 5, i32* %a, align 4
 %2 = load i32, i32* %a, align 4
 call void @donothing(i32 %2)
 %3 = load i32, i32* %a, align 4
 store i32 %3, i32* %m, align 4
 %4 = load i32, i32* %m, align 4
 call void @donothing(i32 %4)
 store i32 9, i32* %a, align 4
 %5 = load i32, i32* %1, align 4
 %6 = icmp slt i32 %5, 5
 br i1 %6, label %7, label %11

; <label>:7 ; preds = %0
 store i32 3, i32* %b, align 4
 %8 = load i32, i32* %b, align 4
 call void @donothing(i32 %8)
 %9 = load i32, i32* %b, align 4
 store i32 %9, i32* %z, align 4
 %10 = load i32, i32* %z, align 4
 call void @donothing(i32 %10)
 br label %14

; <label>:11 ; preds = %0
 %12 = load i32, i32* %a, align 4
 store i32 %12, i32* %k, align 4
 %13 = load i32, i32* %k, align 4
 call void @donothing(i32 %13)
 br label %14

; <label>:14 ; preds = %11, %7
 %15 = load i32, i32* %m, align 4
 ret i32 %15
}

attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-
elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no-
realign-stack" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false"
"use-soft-float"="false" }

!llvm.ident = !{!0}

!0 = !{!"clang version 3.7.0 (trunk 234045)"}

How to do it…
1. To list the live intervals, we will need to modify the code of the LiveIntervalAnalysis.cpp

file by adding code to print the live intervals. We will add the following lines (marked with a +
symbol before each added line):

void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
 assert(LRCalc && "LRCalc not initialized.");
 assert(LI.empty() && "Should only compute empty intervals.");
 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
 computeDeadValues(LI, nullptr);

/**** add the following code ****/
+ llvm::outs() << "********** INTERVALS **********\n";

 // Dump the regunits.
 + for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
 + if (LiveRange *LR = RegUnitRanges[i])
 + llvm::outs() << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';

 // Dump the virtregs.
 + llvm::outs() << "virtregs:";
 + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 + unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 + if (hasInterval(Reg))
 + llvm::outs() << getInterval(Reg) << '\n';
 + }

2. Build LLVM after modifying the preceding source file, and install it on the path.
3. Now compile the test code in the IR form using the llc command. You will get the live

intervals:

$ llc interval.ll
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
%vreg2 [144r,192r:0) 0@144r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
%vreg2 [144r,192r:0) 0@144r
%vreg5 [544r,592r:0) 0@544r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
%vreg2 [144r,192r:0) 0@144r
%vreg5 [544r,592r:0) 0@544r
%vreg6 [352r,368r:0) 0@352r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
%vreg2 [144r,192r:0) 0@144r
%vreg5 [544r,592r:0) 0@544r
%vreg6 [352r,368r:0) 0@352r
%vreg7 [416r,464r:0) 0@416r
********** INTERVALS **********
virtregs:%vreg0 [16r,32r:0) 0@16r
%vreg1 [80r,96r:0) 0@80r
%vreg2 [144r,192r:0) 0@144r
%vreg5 [544r,592r:0) 0@544r
%vreg6 [352r,368r:0) 0@352r
%vreg7 [416r,464r:0) 0@416r
%vreg8 [656r,672r:0) 0@656r

How it works…
In the preceding example, we saw how live intervals are associated with each virtual register. The
program points at the beginning and the end of live intervals are marked in square brackets. The
process of generating these live intervals starts from the
LiveVariables::runOnMachineFunction(MachineFunction &mf) function in the
lib/CodeGen/LiveVariables.cpp file, where it assigns the definition and usage of the registers
using the HandleVirtRegUse and HandleVirtRegDef functions. It gets the VarInfo object for the

given virtual register using the getVarInfo function.

The LiveInterval and LiveRange classes are defined in LiveInterval.cpp. The functions in this
file takes the information on the liveliness of each variable and then checks whether they overlap or
not.

In the LiveIntervalAnalysis.cpp file, we have the implementation of the live interval analysis
pass, which scans the basic blocks (ordered in a linear fashion) in depth-first order, and creates a
live interval for each virtual and physical register. This analysis is used by the register allocators,
which will be discussed in next recipe.

See also
If you want to see in detail how the virtual registers for different basic blocks get generated, and
see the lifetime of these virtual registers, use the –debug-only=regalloc command-line option
with the llc tool when compiling the test case. You need a debug build of the LLVM for this.
To get more detail on live intervals, go through these code files:

Lib/CodeGen/ LiveInterval.cpp

Lib/CodeGen/ LiveIntervalAnalysis.cpp

Lib/CodeGen/ LiveVariables.cpp

Allocating registers
Register allocation is the task of assigning physical registers to virtual registers. Virtual registers can
be infinite, but the physical registers for a machine are limited. So, register allocation is aimed at
maximizing the number of physical registers getting assigned to virtual registers. In this recipe, we
will see how registers are represented in LLVM, how can we tinker with the register information, the
steps taking place, and built-in register allocators.

Getting ready
You need to build and install LLVM.

How to do it…
1. To see how registers are represented in LLVM, open the build-

folder/lib/Target/X86/X86GenRegisterInfo.inc file and check out the first few lines,
which show that registers are represented as integers:

namespace X86 {
enum {
 NoRegister,
 AH = 1,
 AL = 2,
 AX = 3,
 BH = 4,
 BL = 5,
 BP = 6,
 BPL = 7,
 BX = 8,
 CH = 9,
…

2. For architectures that have registers that share the same physical location, check out the
RegisterInfo.td file of that architecture for alias information. Let's check out the
lib/Target/X86/X86RegisterInfo.td file. By looking at the following code snippet, we see
how the EAX, AX, and AL registers are aliased (we only specify the smallest register alias):

def AL : X86Reg<"al", 0>;
def DL : X86Reg<"dl", 2>;
def CL : X86Reg<"cl", 1>;
def BL : X86Reg<"bl", 3>;

def AH : X86Reg<"ah", 4>;
def DH : X86Reg<"dh", 6>;
def CH : X86Reg<"ch", 5>;
def BH : X86Reg<"bh", 7>;

def AX : X86Reg<"ax", 0, [AL,AH]>;
def DX : X86Reg<"dx", 2, [DL,DH]>;
def CX : X86Reg<"cx", 1, [CL,CH]>;

def BX : X86Reg<"bx", 3, [BL,BH]>;

// 32-bit registers
let SubRegIndices = [sub_16bit] in {
def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>;
def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>;
def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>;
def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>;
def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>;
def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>;
def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>;
def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>;
def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>;
…

3. To change the number of physical registers available, go to the TargetRegisterInfo.td file
and manually comment out some of the registers, which are the last parameters of the
RegisterClass. Open the X86RegisterInfo.cpp file and remove the registers AH, CH, and DH:

def GR8 : RegisterClass<"X86", [i8], 8,
 (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL,
SPL,
 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)>
{

4. When you build LLVM, the .inc file in the first step will have been changed and will not
contain the AH, CH, and DH registers.

5. Use the test case from the previous recipe, Analyzing live intervals, in which we performed live
interval analysis, and run the register allocation techniques provided by LLVM, namely fast,
basic, greedy, and pbqp. Let's run two of them here and compare the results:

$ llc –regalloc=basic interval.ll –o intervalregbasic.s

Next, create the intervalregbasic.s file as shown:

$ cat intervalregbasic.s
 .text
 .file "interval.ll"
 .globl donothing
 .align 16, 0x90
 .type donothing,@function
donothing: # @donothing
BB#0:
 movl %edi, -4(%rsp)
 retq
.Lfunc_end0:
 .size donothing, .Lfunc_end0-donothing

 .globl func
 .align 16, 0x90
 .type func,@function
func: # @func
BB#0:

 subq $24, %rsp
 movl %edi, 20(%rsp)
 movl $5, 16(%rsp)
 movl $5, %edi
 callq donothing
 movl 16(%rsp), %edi
 movl %edi, 12(%rsp)
 callq donothing
 movl $9, 16(%rsp)
 cmpl $4, 20(%rsp)
 jg .LBB1_2
BB#1:
 movl $3, 8(%rsp)
 movl $3, %edi
 callq donothing
 movl 8(%rsp), %edi
 movl %edi, 4(%rsp)
 jmp .LBB1_3
.LBB1_2:
 movl 16(%rsp), %edi
 movl %edi, (%rsp)
.LBB1_3:
 callq donothing
 movl 12(%rsp), %eax
 addq $24, %rsp
 retq
.Lfunc_end1:
 .size func, .Lfunc_end1-func

Next, run the following command to compare the two files:

$ llc –regalloc=pbqp interval.ll –o intervalregpbqp.s

Create the intervalregbqp.s file:

$cat intervalregpbqp.s
 .text
 .file "interval.ll"
 .globl donothing
 .align 16, 0x90
 .type donothing,@function
donothing: # @donothing
BB#0:
 movl %edi, %eax
 movl %eax, -4(%rsp)
 retq
.Lfunc_end0:
 .size donothing, .Lfunc_end0-donothing

 .globl func
 .align 16, 0x90
 .type func,@function

func: # @func
BB#0:
 subq $24, %rsp
 movl %edi, %eax
 movl %eax, 20(%rsp)
 movl $5, 16(%rsp)
 movl $5, %edi
 callq donothing
 movl 16(%rsp), %eax
 movl %eax, 12(%rsp)
 movl %eax, %edi
 callq donothing
 movl $9, 16(%rsp)
 cmpl $4, 20(%rsp)
 jg .LBB1_2
BB#1:
 movl $3, 8(%rsp)
 movl $3, %edi
 callq donothing
 movl 8(%rsp), %eax
 movl %eax, 4(%rsp)
 jmp .LBB1_3
.LBB1_2:
 movl 16(%rsp), %eax
 movl %eax, (%rsp)
.LBB1_3:
 movl %eax, %edi
 callq donothing
 movl 12(%rsp), %eax
 addq $24, %rsp
 retq
.Lfunc_end1:
 .size func, .Lfunc_end1-func

6. Now, use a diff tool and compare the two assemblies side by side.

How it works…
The mapping of virtual registers on physical registers can be done in two ways:

Direct Mapping: By making use of the TargetRegisterInfo and MachineOperand classes.
This depends on the developer, who needs to provide the location where load and store
instructions should be inserted in order to get and store values in the memory.
Indirect Mapping: This depends on the VirtRegMap class to insert loads and stores, and to get
and set values from the memory. Use the VirtRegMap::assignVirt2Phys(vreg, preg)
function to map a virtual register on a physical one.

Another important role that the register allocator plays is in SSA form deconstruction. As traditional
instruction sets do not support the phi instruction, we must replace it with other instructions to
generate the machine code. The traditional way was to replace the phi instruction with the copy

instruction.

After this stage, we do the actual mapping on the physical registers. We have four implementations of
register allocation in LLVM, which have their algorithms for mapping the virtual registers on the
physical registers. It is not possible to cover in detail any of those algorithms here. If you want to try
and understand them, refer to the next section.

See also
To learn more about the algorithms used in LLVM, look through the source codes located at
lib/CodeGen/:

lib/CodeGen/RegAllocBasic.cpp

lib/CodeGen/ RegAllocFast.cpp

lib/CodeGen/ RegAllocGreedy.cpp

lib/CodeGen/ RegAllocPBQP.cpp

Inserting the prologue-epilogue code
Inserting the prologue-epilogue code involves stack unwinding, finalizing the function layout, saving
callee-saved registers and emitting the prologue and epilogue code. It also replaces abstract frame
indexes with appropriate references. This pass runs after the register allocation phase.

How to do it…
The skeleton and the important functions defined in the PrologueEpilogueInserter class are as
follows:

The prologue epilogue inserter pass runs on a machine function, hence it inherits the
MachineFunctionPass class. Its constructor initializes the pass:

class PEI : public MachineFunctionPass {
 public:
 static char ID;
 PEI() : MachineFunctionPass(ID) {
 initializePEIPass(*PassRegistry::getPassRegistry());
 }

There are various helper functions defined in this class that help insert the prologue and epilogue
code:

 void calculateSets(MachineFunction &Fn);
 void calculateCallsInformation(MachineFunction &Fn);
 void calculateCalleeSavedRegisters(MachineFunction &Fn);
 void insertCSRSpillsAndRestores(MachineFunction &Fn);
 void calculateFrameObjectOffsets(MachineFunction &Fn);
 void replaceFrameIndices(MachineFunction &Fn);
 void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
 int &SPAdj);
 void scavengeFrameVirtualRegs(MachineFunction &Fn);

The main function, insertPrologEpilogCode(), does the task of inserting the prologue and
epilogue code:

 void insertPrologEpilogCode(MachineFunction &Fn);

The first function to execute in this pass is the runOnFunction() function. The comments in the
code show the various operations carried out, such as calculating the call frame size, adjusting
the stack variables, inserting the spill code for the callee-saved register for modified registers,
calculating the actual frame offset, inserting the prologue and epilogue code for the function,
replacing the abstract frame index with the actual offsets, and so on:

bool PEI::runOnMachineFunction(MachineFunction &Fn) {
 const Function* F = Fn.getFunction();
 const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
 const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();

 assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc must assign all

vregs");

 RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : nullptr;
 FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);

 // Calculate the MaxCallFrameSize and AdjustsStack variables for the
 // function's frame information. Also eliminates call frame pseudo
 // instructions.
 calculateCallsInformation(Fn);

 // Allow the target machine to make some adjustments to the function
 // e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
 TFI->processFunctionBeforeCalleeSavedScan(Fn, RS);

 // Scan the function for modified callee saved registers and insert spill
code
 // for any callee saved registers that are modified.
 calculateCalleeSavedRegisters(Fn);

 // Determine placement of CSR spill/restore code:
 // place all spills in the entry block, all restores in return blocks.
 calculateSets(Fn);

 // Add the code to save and restore the callee saved registers
 if (!F->hasFnAttribute(Attribute::Naked))
 insertCSRSpillsAndRestores(Fn);

 // Allow the target machine to make final modifications to the function
 // before the frame layout is finalized.
 TFI->processFunctionBeforeFrameFinalized(Fn, RS);

 // Calculate actual frame offsets for all abstract stack objects...
 calculateFrameObjectOffsets(Fn);

 // Add prolog and epilog code to the function. This function is required
 // to align the stack frame as necessary for any stack variables or
 // called functions. Because of this, calculateCalleeSavedRegisters()
 // must be called before this function in order to set the AdjustsStack
 // and MaxCallFrameSize variables.
 if (!F->hasFnAttribute(Attribute::Naked))
 insertPrologEpilogCode(Fn);

 // Replace all MO_FrameIndex operands with physical register references
 // and actual offsets.
 replaceFrameIndices(Fn);

 // If register scavenging is needed, as we've enabled doing it as a
 // post-pass, scavenge the virtual registers that frame index elimination
 // inserted.
 if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
 scavengeFrameVirtualRegs(Fn);

 // Clear any vregs created by virtual scavenging.
 Fn.getRegInfo().clearVirtRegs();

 // Warn on stack size when we exceeds the given limit.
 MachineFrameInfo *MFI = Fn.getFrameInfo();
 uint64_t StackSize = MFI->getStackSize();
 if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
 DiagnosticInfoStackSize DiagStackSize(*F, StackSize);
 F->getContext().diagnose(DiagStackSize);
 }
 delete RS;
 ReturnBlocks.clear();
 return true;
}

The main function that inserts prologue-epilogue code is the insertPrologEpilogCode()
function. This function first takes the TargetFrameLowering object and then emits a prologue
code for that function corresponding to that target. After that, for each basic block in that
function, it checks whether there is a return statement. If there is a return statement, then it emits
an epilogue code for that function:

void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
 const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();

 // Add prologue to the function.
 TFI.emitPrologue(Fn);

 // Add epilogue to restore the callee-save registers in each exiting block
 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
{
 // If last instruction is a return instruction, add an epilogue
 if (!I->empty() && I->back().isReturn())
 TFI.emitEpilogue(Fn, *I);
 }

 // Emit additional code that is required to support segmented stacks, if
 // we've been asked for it. This, when linked with a runtime with support
 // for segmented stacks (libgcc is one), will result in allocating stack
 // space in small chunks instead of one large contiguous block.
 if (Fn.shouldSplitStack())
 TFI.adjustForSegmentedStacks(Fn);

 // Emit additional code that is required to explicitly handle the stack in
 // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
 // approach is rather similar to that of Segmented Stacks, but it uses a
 // different conditional check and another BIF for allocating more stack
 // space.
 if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE)
 TFI.adjustForHiPEPrologue(Fn);
}

How it works…
The preceding code invokes the emitEpilogue() and the emitPrologue() functions in the
TargetFrameLowering class, which will be discussed in the target-specific frame lowering recipes

in later chapters.

Code emission
The code emission phase lowers the code from code generator abstractions (such as
MachineFunction class, MachineInstr class, and so on) to machine code layer abstractions
(MCInst class, MCStreamer class, and so on). The important classes in this phase are the target-
independent AsmPrinter class, target-specific subclasses of AsmPrinter, and the
TargetLoweringObjectFile class.

The MC layer is responsible for emitting object files, which consist of labels, directives, and
instructions; while the CodeGen layer consists of MachineFunctions, MachineBasicBlock and
MachineInstructions. A key class used at this point in time is the MCStreamer class, which
consists of assembler APIs. The MCStreamer class has functions such as EmitLabel,
EmitSymbolAttribute, SwitchSection, and so on, which directly correspond to the
aforementioned assembly-level directives.

There are four important things that need to be implemented for the target in order to emit code:

Define a subclass of the AsmPrinter class for the target. This class implements the general
lowering process, converting the MachineFunctions functions into MC label constructs. The
AsmPrinter base class methods and routines help implement a target-specific AsmPrinter
class. The TargetLoweringObjectFile class implements much of the common logic for the
ELF, COFF, or MachO targets.
Implement an instruction printer for the target. The instruction printer takes an MCInst class and
renders it into a raw_ostream class as text. Most of this is automatically generated from the .td
file (when you specify something like add $dst, $src1, $src2 in the instructions), but you need
to implement routines to print operands.
Implement code that lowers a MachineInstr class to an MCInst class, usually implemented in
<target>MCInstLower.cpp. This lowering process is often target-specific, and is responsible
for turning jump table entries, constant pool indices, global variable addresses, and so on into
MCLabels, as appropriate. The instruction printer or the encoder takes the MCInsts that are
generated.
Implement a subclass of MCCodeEmitter that lowers MCInsts to machine code bytes and
relocations. This is important if you want to support direct .o file emission, or want to
implement an assembler for your target.

How to do it…
Let's visit some important functions in the AsmPrinter base class in the
lib/CodeGen/AsmPrinter/AsmPrinter.cpp file:

EmitLinkage(): This emits the linkage of the given variables or functions:

void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const ;

EmitGlobalVariable(): This emits the specified global variable to the .s file:

void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV);

EmitFunctionHeader(): This emits the header of the current function:

void AsmPrinter::EmitFunctionHeader();

EmitFunctionBody(): This method emits the body and trailer of a function:

void AsmPrinter::EmitFunctionBody();

EmitJumpTableInfo(): This prints assembly representations of the jump tables used by the
current function to the current output stream:

void AsmPrinter::EmitJumpTableInfo();

EmitJumpTableEntry(): This emits a jump table entry for the specified MachineBasicBlock
class to the current stream:

void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, const
MachineBasicBlock *MBB,
unsigned UID) const;

Emit integer types of 8, 16, or 32 bit size:

void AsmPrinter::EmitInt8(int Value) const {
 OutStreamer.EmitIntValue(Value, 1);
}

void AsmPrinter::EmitInt16(int Value) const {
 OutStreamer.EmitIntValue(Value, 2);
}

void AsmPrinter::EmitInt32(int Value) const {
OutStreamer.EmitIntValue(Value, 4);
}

For detailed implementation on code emission, see the
lib/CodeGen/AsmPrinter/AsmPrinter.cpp file. One important thing to note is that this class uses
the OutStreamer class object to output assembly instructions. The details of target-specific code
emission will be covered in later chapters.

Tail call optimization
In this recipe, we will see how tail call optimization is done in LLVM. Tail call optimization is a
technique where the callee reuses the stack of the caller instead of adding a new stack frame to the
call stack, hence saving stack space and the number of returns when dealing with mutually recursive
functions.

Getting ready
We need to make sure of the following:

The llc tool must be installed in $PATH
The tailcallopt option must be enabled
The test code must have a tail call

How to do it…
1. Write the test code for checking tail call optimization:

$ cat tailcall.ll
declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32
%a4)

define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
 %l1 = add i32 %in1, %in2
 %tmp = tail call fastcc i32 @tailcallee(i32 inreg %in1, i32 inreg %in2,
i32 %in1, i32 %l1)
 ret i32 %tmp
}

2. Run the llc tool with the –tailcallopt option on the test code to generate the assembly file
with the tailcall-optimized code:

$ llc -tailcallopt tailcall.ll

3. Display the output generated:

$ cat tailcall.s
 .text
 .file "tailcall.ll"
 .globl tailcaller
 .align 16, 0x90
 .type tailcaller,@function
tailcaller: # @tailcaller
 .cfi_startproc
BB#0:
 pushq %rax
.Ltmp0:
 .cfi_def_cfa_offset 16
 # kill: ESI<def> ESI<kill> RSI<def>

 # kill: EDI<def> EDI<kill> RDI<def>
 leal (%rdi,%rsi), %ecx
 # kill: ESI<def> ESI<kill> RSI<kill>
 movl %edi, %edx
 popq %rax
 jmp tailcallee # TAILCALL
.Lfunc_end0:
 .size tailcaller, .Lfunc_end0-tailcaller
 .cfi_endproc

 .section ".note.GNU-stack","",@progbits

4. Using the llc tool, generate the assembly again but without using the -tailcallopt option:

$ llc tailcall.ll -o tailcall1.s

5. Display the output using the cat command:

$ cat tailcall1.s
 .text
 .file "tailcall.ll"
 .globl tailcaller
 .align 16, 0x90
 .type tailcaller,@function
tailcaller: # @tailcaller
 .cfi_startproc
BB#0:
 # kill: ESI<def> ESI<kill> RSI<def>
 # kill: EDI<def> EDI<kill> RDI<def>
 leal (%rdi,%rsi), %ecx
 # kill: ESI<def> ESI<kill> RSI<kill>
 movl %edi, %edx
 jmp tailcallee # TAILCALL
.Lfunc_end0:
 .size tailcaller, .Lfunc_end0-tailcaller
 .cfi_endproc
 .section ".note.GNU-stack","",@progbits

Compare the two assemblies using a diff tool. We used the meld tool here:

How it works…
The tail call optimization is a compiler optimization technique, which a compiler can use to make a
call to a function and take up no additional stack space; we don't need to create a new stack frame for
this function call. This happens if the last instruction executed in a function is a call to another
function. A point to note is that the caller function now does not need the stack space; it simply calls a
function (another function or itself) and returns whatever value the called function would have
returned. This optimization can make recursive calls take up constant and limited space. In this
optimization, the code might not always be in the form for which a tail call is possible. It tries and
modifies the source to see whether a tail call is possible or not.

In the preceding test case, we see that a push-and-pop instruction is added due to tail call
optimization. In LLVM, the tail call optimization is handled by the architecture-specific
ISelLowering.cpp file; for x86, it is the X86ISelLowering.cpp file:

The code in function SDValue X86TargetLowering::LowerCall (…….)
bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
 if (IsMustTail) {
 // Force this to be a tail call. The verifier rules are enough to ensure
 // that we can lower this successfully without moving the return address
 // around.
 isTailCall = true;
 } else if (isTailCall) {

 // Check if it's really possible to do a tail call.
 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 isVarArg, SR != NotStructReturn,
 MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
 Outs, OutVals, Ins, DAG);

The preceding code is used to call the IsEligibleForTailCallOptimization() function when the
tailcallopt flag is passed. The IsEligibleForTailCallOptimization() function decides
whether or not the piece of code is eligible for tail call optimization. If it is, then the code generator
will make the necessary changes.

Sibling call optimisation
In this recipe, we will see how sibling call optimization works in LLVM. Sibling call optimization
can be looked at as an optimized tail call, the only constraint being that the functions should share a
similar function signature, that is, matching return types and matching function arguments.

Getting ready
Write a test case for sibling call optimization, making sure that the caller and callee have the same
calling conventions (in either C or fastcc), and that the call in the tail position is a tail call:

$ cat sibcall.ll
declare i32 @bar(i32, i32)

define i32 @foo(i32 %a, i32 %b, i32 %c) {
 entry:
 %0 = tail call i32 @bar(i32 %a, i32 %b)
 ret i32 %0
}

How to do it…
1. Run the llc tool to generate the assembly:

$ llc sibcall.ll

2. View the generated assembly using the cat command:

$ cat sibcall.s
 .text
 .file "sibcall.ll"
 .globl foo
 .align 16, 0x90
 .type foo,@function
foo: # @foo
 .cfi_startproc
BB#0: # %entry
 jmp bar # TAILCALL
.Lfunc_end0:
 .size foo, .Lfunc_end0-foo
 .cfi_endproc

 .section ".note.GNU-stack","",@progbits

How it works…
Sibling call optimization is a restricted version of tail call optimization that can be performed on tail
calls without passing the tailcallopt option. Sibling call optimization works in a similar way to

tail call optimization, except that the sibling calls are automatically detected and do not need any ABI
changes. The similarity needed in the function signatures is because when the caller function (which
calls a tail recursive function) tries to clean up the callee's argument, after the callee has done its
work, this may lead to memory leak if the callee exceeds the argument space to perform a sibling call
to a function requiring more stack space for arguments.

Chapter 8. Writing an LLVM Backend
In this chapter, we will cover the following recipes:

Defining registers and register sets
Defining the calling convention
Defining the instruction set
Implementing frame lowering
Printing an instruction
Selecting an instruction
Adding instruction encoding
Supporting a subtarget
Lowering to multiple instructions
Registering a target

Introduction
The ultimate goal of a compiler is to produce a target code, or an assembly code that can be
converted into object code and executed on the actual hardware. To generate the assembly code, the
compiler needs to know the various aspects of the architecture of the target machine—the registers,
instruction set, calling convention, pipeline, and so on. There are lots of optimizations that can be
done in this phase as well.

LLVM has its own way of defining the target machine. It uses tablegen to specify the target registers,
instructions, calling convention, and so on. The tablegen function eases the way we describe a large
set of architecture properties in a programmatic way.

LLVM has a pipeline structure for the backend, where instructions travel through phases like this;
from the LLVM IR to SelectionDAG, then to MachineDAG, then to MachineInstr, and finally to
MCInst.

The IR is converted into SelectionDAG (DAG stands for Directed Acyclic Graph). Then
SelectionDAG legalization occurs where illegal instructions are mapped on the legal operations
permitted by the target machine. After this stage, SelectionDAG is converted to MachineDAG, which
is basically an instruction selection supported by the backend.

CPUs execute a linear sequence of instructions. The goal of the scheduling step is to linearize the
DAG by assigning an order to its operations. LLVM's code generator employs clever heuristics (such
as register pressure reduction) to try and produce a schedule that will result in faster code. Register
allocation policies also play an important role in producing better LLVM code.

This chapter describes how to build an LLVM toy backend from scratch. By the end of this chapter,
we will be able to generate assembly code for a sample toy backend.

A sample backend
The sample backend considered in this chapter is a simple RISC-type architecture, with a few
registers (say r0-r3), a stack pointer (sp), and a link register (lr), for storing the return address.

The calling convention of this toy backend is similar to the ARM architecture—arguments passed to
the function will be stored in register sets r0-r1, and the return value will be stored in r0.

Defining registers and registers sets
This recipe shows you how to define registers and register sets in .td files. The tablegen function
will convert this .td file into .inc files, which will be the #include declarative in our .cpp files
and refer to registers.

Getting ready
We have defined our toy target machine to have four registers (r0-r3), a stack register (sp), and a link
register (lr). These can be specified in the TOYRegisterInfo.td file. The tablegen function
provides the Register class, which can be extended to specify the registers.

How to do it…
To define the backend architecture using target descriptor files, proceed with the following steps.

1. Create a new folder in lib/Target named TOY:

$ mkdir llvm_root_directory/lib/Target/TOY

2. Create a new TOYRegisterInfo.td file in the new TOY folder:

$ cd llvm_root_directory/lib/Target/TOY
$ vi TOYRegisterInfo.td

3. Define the hardware encoding, namespace, registers, and the register class:

class TOYReg<bits<16> Enc, string n> : Register<n> {
 let HWEncoding = Enc;
 let Namespace = "TOY";
}

foreach i = 0-3 in {
 def R#i : R<i, "r"#i >;
}

def SP : TOYReg<13, "sp">;
def LR : TOYReg<14, "lr">;

def GRRegs : RegisterClass<"TOY", [i32], 32,
 (add R0, R1, R2, R3, SP)>;

How it works…
The tablegen function processes this .td file to generate the .inc file, which generally has enums
generated for these registers. These enums can be used in the.cpp files, in which the registers can be
referenced as TOY::R0. These .inc files will be generated when we build the LLVM project.

See also
To get more details about how registers are defined for more advanced architecture, such as
ARM, refer to the lib/Target/ARM/ARMRegisterInfo.td file in the source code of LLVM.

Defining the calling convention
The calling convention specifies how values are passed to and from a function call. Our TOY
architecture specifies that two arguments are passed in two registers, r0 and r1, while the remaining
ones are passed to the stack. This recipe shows you how to define the calling convention, which will
be used in ISelLowering (the instruction selection lowering phase discussed in Chapter 6, Target
Independent Code Generator) via function pointers.

The calling convention will be defined in the TOYCallingConv.td file, which will have primarily
two sections—one for defining the return value convention, and the other for defining the argument
passing convention. The return value convention specifies how the return values will reside and in
which registers. The argument passing convention will specify how the arguments passed will reside
and in which registers. The CallingConv class is inherited while defining the calling convention of
the toy architecture.

How to do it…
To implement the calling convention, proceed with the following steps:

1. Create a new TOYCallingConv.td file in the lib/Target/TOY folder:

$ vi TOYCallingConv.td

2. In that file, define the return value convention, as follows:

def RetCC_TOY : CallingConv<[
 CCIfType<[i32], CCAssignToReg<[R0]>>,
 CCIfType<[i32], CCAssignToStack<4, 4>>
]>;

3. Also, define the argument passing convention, like this:

def CC_TOY : CallingConv<[
 CCIfType<[i8, i16], CCPromoteToType<i32>>,
 CCIfType<[i32], CCAssignToReg<[R0, R1]>>,
 CCIfType<[i32], CCAssignToStack<4, 4>>
]>;

4. Define the callee saved register set:

def CC_Save : CalleeSavedRegs<(add R2, R3)>;

How it works…
In the .td file you just read about, it has been specified that the return values of the integer type of 32
bits are stored in the r0 register. Whenever arguments are passed to a function, the first two arguments
will be stored in the r0 and r1 registers. It is also specified that whenever any data type, such as an
integer of 8 bits or 16 bits, will be encountered, it will be promoted to the 32-bit integer type.

The tablegen function generates a TOYCallingConv.inc file, which will be referred to in the
TOYISelLowering.cpp file. The two target hook functions used to define argument handling are
LowerFormalArguments() and LowerReturn().

See also
To see a detailed implementation of advanced architectures, such as ARM, look into the
lib/Target/ARM/ARMCallingConv.td file

Defining the instruction set
The instruction set of an architecture varies according to various features present in the architecture.
This recipe demonstrates how instruction sets are defined for target architecture.

Three things are defined in the instruction target description file: operands, the assembly string and
the instruction pattern. The specification contains a list of definitions or outputs, and a list of uses or
inputs. There can be different operand classes, such as the Register class, and the immediate and
more complex register + imm operands.

Here, a simple add instruction definition that takes two registers as operands is demonstrated.

How to do it…
To define an instruction set using target descriptor files, proceed with the following steps.

1. Create a new file called TOYInstrInfo.td in the lib/Target/TOY folder:

$ vi TOYInstrInfo.td

2. Specify the operands, assembly string, and instruction pattern for the add instruction between
two register operands:

def ADDrr : InstTOY<(outs GRRegs:$dst),
 (ins GRRegs:$src1, GRRegs:$src2),
 "add $dst, $src1,z$src2",
[(set i32:$dst, (add i32:$src1, i32:$src2))]>;

How it works…
The add register to the register instruction specifies $dst as the result operand, which belongs to the
General Register type class; inputs $src1 and $src2 as two input operands, which also belong to
the General Register type class; and the instruction assembly string as "add $dst, $src1,
$src2" of the 32-bit integer type.

So, an assembly will be generated for add between two registers, like this:

add r0, r0, r1

The preceding code indicates to add the r0 and r1 register contents and store the result in the r0
register.

See also
Many instructions will have the same type of instruction pattern—ALU instructions such as add,
sub, and so on. In cases such as this multiclass can be used to define the common properties. For
more detailed information about the various types of instruction sets for advanced architecture,

such as ARM, refer to the lib/Target/ARM/ARMInstrInfo.td file

Implementing frame lowering
This recipe talks about frame lowering for target architecture. Frame lowering involves emitting the
prologue and epilogue of the function call.

Getting ready
Note

Two functions need to be defined for frame lowering, namely
TOYFrameLowering::emitPrologue() and TOYFrameLowering::emitEpilogue().

How to do it…
The following functions are defined in the TOYFrameLowering.cpp file in the lib/Target/TOY
folder:

1. The emitPrologue function can be defined as follows:

void TOYFrameLowering::emitPrologue(MachineFunction &MF) const {
 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 MachineBasicBlock &MBB = MF.front();
 MachineBasicBlock::iterator MBBI = MBB.begin();
 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 uint64_t StackSize = computeStackSize(MF);
 if (!StackSize) {
 return;
 }
 unsigned StackReg = TOY::SP;
 unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
(unsigned)StackSize);
 if (OffsetReg) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBrr), StackReg)
 .addReg(StackReg)
 .addReg(OffsetReg)
 .setMIFlag(MachineInstr::FrameSetup);
 } else {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBri), StackReg)
 .addReg(StackReg)
 .addImm(StackSize)
 .setMIFlag(MachineInstr::FrameSetup);
 }
}

2. The emitEpilogue function can be defined like this:

void TOYFrameLowering::emitEpilogue(MachineFunction &MF,
 MachineBasicBlock &MBB) const {

 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();

 DebugLoc dl = MBBI->getDebugLoc();
 uint64_t StackSize = computeStackSize(MF);
 if (!StackSize) {
 return;
 }
 unsigned StackReg = TOY::SP;
 unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
(unsigned)StackSize);
 if (OffsetReg) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDrr), StackReg)
 .addReg(StackReg)
 .addReg(OffsetReg)
 .setMIFlag(MachineInstr::FrameSetup);
 } else {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDri), StackReg)
 .addReg(StackReg)
 .addImm(StackSize)
 .setMIFlag(MachineInstr::FrameSetup);
 }
}

3. Here are some helper functions used to determine the offset for the ADD stack operation:

static unsigned materializeOffset(MachineFunction &MF, MachineBasicBlock
&MBB, MachineBasicBlock::iterator MBBI, unsigned Offset) {
 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 const uint64_t MaxSubImm = 0xfff;
 if (Offset <= MaxSubImm) {
 return 0;
 } else {
 unsigned OffsetReg = TOY::R2;
 unsigned OffsetLo = (unsigned)(Offset & 0xffff);
 unsigned OffsetHi = (unsigned)((Offset & 0xffff0000) >> 16);
 BuildMI(MBB, MBBI, dl, TII.get(TOY::MOVLOi16), OffsetReg)
 .addImm(OffsetLo)
 .setMIFlag(MachineInstr::FrameSetup);
 if (OffsetHi) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::MOVHIi16), OffsetReg)
 .addReg(OffsetReg)
 .addImm(OffsetHi)
 .setMIFlag(MachineInstr::FrameSetup);
 }
 return OffsetReg;
 }
}

4. The following are some more helper functions used to compute the stack size:

uint64_t TOYFrameLowering::computeStackSize(MachineFunction &MF) const {
 MachineFrameInfo *MFI = MF.getFrameInfo();
 uint64_t StackSize = MFI->getStackSize();
 unsigned StackAlign = getStackAlignment();
 if (StackAlign > 0) {
 StackSize = RoundUpToAlignment(StackSize, StackAlign);

 }
 return StackSize;
}

How it works…
The emitPrologue function first computes the stack size to determine whether the prologue is
required at all. Then it adjusts the stack pointer by calculating the offset. For the epilogue, it first
checks whether the epilogue is required or not. Then it restores the stack pointer to what it was at the
beginning of the function.

For example, consider this input IR:

%p = alloca i32, align 4
store i32 2, i32* %p
%b = load i32* %p, align 4
%c = add nsw i32 %a, %b

The TOY assembly generated will look like this:

sub sp, sp, #4 ; prologue
movw r1, #2
str r1, [sp]
add r0, r0, #2
add sp, sp, #4 ; epilogue

See also
For advanced architecture frame lowering, such as in ARM, refer to the
lib/Target/ARM/ARMFrameLowering.cpp file.

Printing an instruction
Printing an assembly instruction is an important step in generating target code. Various classes are
defined that work as a gateway to the streamers. The instruction string is provided by the .td file
defined earlier.

Getting ready
The first and foremost step for printing instructions is to define the instruction string in the .td file,
which was done in the Defining the instruction set recipe.

How to do it…
Perform the following steps:

1. Create a new folder called InstPrinter inside the TOY folder:

$ cd lib/Target/TOY
$ mkdir InstPrinter

2. In a new file, called TOYInstrFormats.td, define the AsmString variable:

class InstTOY<dag outs, dag ins, string asmstr, list<dag> pattern>
 : Instruction {
 field bits<32> Inst;
 let Namespace = "TOY";
 dag OutOperandList = outs;
 dag InOperandList = ins;
 let AsmString = asmstr;
 let Pattern = pattern;
 let Size = 4;
}

3. Create a new file called TOYInstPrinter.cpp, and define the printOperand function, as
follows:

void TOYInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
 const MCOperand &Op = MI->getOperand(OpNo);
 if (Op.isReg()) {
 printRegName(O, Op.getReg());
 return;
 }

 if (Op.isImm()) {
 O << "#" << Op.getImm();
 return;
 }
 assert(Op.isExpr() && "unknown operand kind in printOperand");
 printExpr(Op.getExpr(), O);
}

4. Also, define a function to print the register names:

void TOYInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
 OS << StringRef(getRegisterName(RegNo)).lower();
}

5. Define a function to print the instruction:

void TOYInstPrinter::printInst(const MCInst *MI, raw_ostream &O,StringRef
Annot) {
 printInstruction(MI, O);
 printAnnotation(O, Annot);
}

6. It also requires MCASMinfo to be specified to print the instruction. This can be done by defining
the TOYMCAsmInfo.h and TOYMCAsmInfo.cpp files.

The TOYMCAsmInfo.h file can be defined as follows:

#ifndef TOYTARGETASMINFO_H
#define TOYTARGETASMINFO_H

#include "llvm/MC/MCAsmInfoELF.h"

namespace llvm {
class StringRef;
class Target;

class TOYMCAsmInfo : public MCAsmInfoELF {
 virtual void anchor();

public:
 explicit TOYMCAsmInfo(StringRef TT);
};

} // namespace llvm
#endif

The TOYMCAsmInfo.cpp file can be defined like this:

#include "TOYMCAsmInfo.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;

void TOYMCAsmInfo::anchor() {}

TOYMCAsmInfo::TOYMCAsmInfo(StringRef TT) {
 SupportsDebugInformation = true;
 Data16bitsDirective = "\t.short\t";
 Data32bitsDirective = "\t.long\t";
 Data64bitsDirective = 0;
 ZeroDirective = "\t.space\t";
 CommentString = "#";

 AscizDirective = ".asciiz";

 HiddenVisibilityAttr = MCSA_Invalid;
 HiddenDeclarationVisibilityAttr = MCSA_Invalid;
 ProtectedVisibilityAttr = MCSA_Invalid;
}

7. Define the LLVMBuild.txt file for the instruction printer:

[component_0]
type = Library
name = TOYAsmPrinter
parent = TOY
required_libraries = MC Support
add_to_library_groups = TOY

8. Define CMakeLists.txt:

add_llvm_library(LLVMTOYAsmPrinter
 TOYInstPrinter.cpp
)

How it works…
When the final compilation takes place, the llc tool—a static compiler—will generate the assembly of
the TOY architecture.

For example, the following IR, when given to the llc tool, will generate an assembly as shown:

target datalayout = "e-m:e-p:32:32-i1:8:32-i8:8:32- i16:16:32-i64:32-f64:32-
a:0:32-n32"
target triple = "toy"
define i32 @foo(i32 %a, i32 %b) {
 %c = add nsw i32 %a, %b
 ret i32 %c
}

$ llc foo.ll
.text
.file "foo.ll"
.globl foo
.type foo,@function
foo: # @foo
BB#0: # %entry
add r0, r0, r1
b lr
.Ltmp0:
.size foo, .Ltmp0-foo

Selecting an instruction
An IR instruction in DAG needs to be lowered to a target-specific instruction. The SDAG node
contains IR, which needs to be mapped on machine-specific DAG nodes. The outcome of the
selection phase is ready for scheduling.

Getting ready
1. For selecting a machine-specific instruction, a separate class, TOYDAGToDAGISel, needs to be

defined. To compile the file containing this class definition, add the filename to the
CMakeLists.txt file in the TOY folder:

$ vi CMakeLists .txt
add_llvm_target(...
...
TOYISelDAGToDAG.cpp
...
)

2. A pass entry needs to be added in the TOYTargetMachine.h and TOYTargetMachine.cpp files:

$ vi TOYTargetMachine.h
const TOYInstrInfo *getInstrInfo() const override {
return getSubtargetImpl()->getInstrInfo();
}

3. The following code in TOYTargetMachine.cpp will create a pass in the instruction selection
stage:

class TOYPassConfig : public TargetPassConfig {
public:
...
virtual bool addInstSelector();
};
...
bool TOYPassConfig::addInstSelector() {
addPass(createTOYISelDag(getTOYTargetMachine()));
return false;
}

How to do it…
To define an instruction selection function, proceed with the following steps:

1. Create a file called TOYISelDAGToDAG.cpp:

$ vi TOYISelDAGToDAG.cpp

2. Include the following files:

#include "TOY.h"

#include "TOYTargetMachine.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "TOYInstrInfo.h"

3. Define a new class called TOYDAGToDAGISel as follows, which will inherit from the
SelectionDAGISel class:

class TOYDAGToDAGISel : public SelectionDAGISel {
 const TOYSubtarget &Subtarget;

public:
 explicit TOYDAGToDAGISel(TOYTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel), Subtarget(*TM.getSubtargetImpl()) {}
};

4. The most important function to define in this class is Select(), which will return an SDNode
object specific to the machine instruction:

Declare it in the class:

SDNode *Select(SDNode *N);

Define it further as follows:

SDNode *TOYDAGToDAGISel::Select(SDNode *N) {
 return SelectCode(N);
}

5. Another important function is used to define the address selection function, which will calculate
the base and offset of the address for load and store operations.

Declare it as shown here:

 bool SelectAddr(SDValue Addr, SDValue &Base, SDValue &Offset);

Define it further, like this:

bool TOYDAGToDAGISel::SelectAddr(SDValue Addr, SDValue &Base, SDValue
&Offset) {
 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
 getTargetLowering()-
>getPointerTy());
 Offset = CurDAG->getTargetConstant(0, MVT::i32);
 return true;
 }
 if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
 Addr.getOpcode() == ISD::TargetGlobalAddress ||
 Addr.getOpcode() == ISD::TargetGlobalTLSAddress) {
 return false; // direct calls.
 }

 Base = Addr;
 Offset = CurDAG->getTargetConstant(0, MVT::i32);
 return true;
}

6. The createTOYISelDag pass converts a legalized DAG into a toy-specific DAG, ready for
instruction scheduling in the same file:

FunctionPass *llvm::createTOYISelDag(TOYTargetMachine &TM, CodeGenOpt::Level
OptLevel) {
return new TOYDAGToDAGISel(TM, OptLevel);
}

How it works…
The TOYDAGToDAGISel::Select() function of TOYISelDAGToDAG.cpp is used for the selection of
the OP code DAG node, while TOYDAGToDAGISel::SelectAddr() is used for the selection of the
DATA DAG node with the addr type. Note that if the address is global or external, we return false for
the address, since its address is calculated in the global context.

See also
For details on the selection of DAG for machine instructions of complex architectures, such as
ARM, look into the lib/Target/ARM/ARMISelDAGToDAG.cpp file in the LLVM source code.

Adding instruction encoding
If the instructions need to be specific for how they are encoded with respect to bit fields, this can be
done by specifying the bit field in the .td file when defining an instruction.

How to do it…
To include instruction encoding while defining instructions, proceed with the following steps:

1. A register operand that will be used to register the add instruction will have some defined
encoding for its instruction. The size of the instruction is 32 bits, and the encoding for it is as
follows:

bits 0 to 3 -> src2, second register operand
bits 4 to 11 -> all zeros
bits 12 to 15 -> dst, for destination register
bits 16 to 19 -> src1, first register operand
bit 20 -> zero
bit 21 to 24 -> for opcode
bit 25 to 27 -> all zeros
bit 28 to 31 -> 1110

This can be achieved by specifying the preceding bit pattern in the .td files
2. In the TOYInstrFormats.td file, define a new variable, called Inst:

class InstTOY<dag outs, dag ins, string asmstr, list<dag> pattern>
 : Instruction {
 field bits<32> Inst;

 let Namespace = "TOY";
 …
 …
 let AsmString = asmstr;
 …
 …
 }

3. In the TOYInstrInfo.td file, define an instruction encoding:

def ADDrr : InstTOY<(outs GRRegs:$dst),(ins GRRegs:$src1, GRRegs:$src2) ...
> {
bits<4> src1;
bits<4> src2;
bits<4> dst;
let Inst{31-25} = 0b1100000;
let Inst{24-21} = 0b1100; // Opcode
let Inst{20} = 0b0;
let Inst{19-16} = src1; // Operand 1
let Inst{15-12} = dst; // Destination
let Inst{11-4} = 0b00000000;
let Inst{3-0} = src2;

}

4. In the TOY/MCTargetDesc folder, in the TOYMCCodeEmitter.cpp file, the encoding function
will be called if the machine instruction operand is a register:

unsigned TOYMCCodeEmitter::getMachineOpValue(const MCInst &MI,
 const MCOperand &MO,
 SmallVectorImpl<MCFixup>
&Fixups,
 const MCSubtargetInfo &STI)
const {
 if (MO.isReg()) {
 return CTX.getRegisterInfo()- >getEncodingValue(MO.getReg());
 }

5. Also, in the same file, a function used to encode the instruction is specified:

void TOYMCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI) const {
 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
 if (Desc.getSize() != 4) {
 llvm_unreachable("Unexpected instruction size!");
 }

 const uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);

 EmitConstant(Binary, Desc.getSize(), OS);
 ++MCNumEmitted;
}

How it works…
In the .td files, the encoding of an instruction has been specified—the bits for the operands, the
destination, flag conditions, and opcode of the instruction. The machine code emitter gets these
encodings from the .inc file generated by tablegen from the .td files through function calls. It
encodes these instructions and emits the same for instruction printing.

See also
For complex architecture such as ARM, see the ARMInstrInfo.td and ARMInstrInfo.td files
in the lib/Target/ARM directory of the LLVM trunk

Supporting a subtarget
A target may have a subtarget—typically, a variant with instructions—way of handling operands,
among others. This subtarget feature can be supported in the LLVM backend. A subtarget may contain
some additional instructions, registers, scheduling models, and so on. ARM has subtargets such as
NEON and THUMB, while x86 has subtarget features such as SSE, AVX, and so on. The instruction
set differs for the subtarget feature, for example, NEON for ARM and SSE/AVX for subtarget features
that support vector instructions. SSE and AVX also support the vector instruction set, but their
instructions differ from each other.

How to do it…
This recipe will demonstrate how to add a support subtarget feature in the backend. A new class that
will inherit the TargetSubtargetInfo class has to be defined:

1. Create a new file called TOYSubtarget.h:

$ vi TOYSubtarget.h

2. Include the following files:

#include "TOY.h"
#include "TOYFrameLowering.h"
#include "TOYISelLowering.h"
#include "TOYInstrInfo.h"
#include "TOYSelectionDAGInfo.h"
#include "TOYSubtarget.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "TOYGenSubtargetInfo.inc"

3. Define a new class, called TOYSubtarget, with some private members that have information on
the data layout, target lowering, target selection DAG, target frame lowering, and so on:

class TOYSubtarget : public TOYGenSubtargetInfo {
 virtual void anchor();

private:
 const DataLayout DL; // Calculates type size & alignment.
 TOYInstrInfo InstrInfo;
 TOYTargetLowering TLInfo;
 TOYSelectionDAGInfo TSInfo;
 TOYFrameLowering FrameLowering;
 InstrItineraryData InstrItins;

4. Declare its constructor:

TOYSubtarget(const std::string &TT, const std::string &CPU, const
std::string &FS, TOYTargetMachine &TM);

This constructor initializes the data members to match that of the specified triplet.
5. Define some helper functions to return the class-specific data:

const InstrItineraryData *getInstrItineraryData() const override {
 return &InstrItins;
}

const TOYInstrInfo *getInstrInfo() const override { return &InstrInfo; }

const TOYRegisterInfo *getRegisterInfo() const override {
 return &InstrInfo.getRegisterInfo();
}

const TOYTargetLowering *getTargetLowering() const override {
 return &TLInfo;
}

const TOYFrameLowering *getFrameLowering() const override {
 return &FrameLowering;
}

const TOYSelectionDAGInfo *getSelectionDAGInfo() const override {
 return &TSInfo;
}

const DataLayout *getDataLayout() const override { return &DL; }

void ParseSubtargetFeatures(StringRef CPU, StringRef FS);

TO LC,

Please maintain the representation of the above code EXACTLY as seen above.

6. Create a new file called TOYSubtarget.cpp, and define the constructor as follows:

TOYSubtarget::TOYSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, TOYTargetMachine &TM)
 DL("e-m:e-p:32:32-i1:8:32-i8:8:32-i16:16:32-i64:32- f64:32-a:0:32-
n32"),
 InstrInfo(), TLInfo(TM), TSInfo(DL), FrameLowering() {}

The subtarget has its own data layout defined, with other information such as frame lowering,
instruction information, subtarget information, and so on.

See also
To dive into the details of subtarget implementation, refer to the
lib/Target/ARM/ARMSubtarget.cpp file in the LLVM source code

Lowering to multiple instructions
Let's take an example of implementing a 32-bit immediate load with high/low pairs, where MOVW
implies moving a 16-bit low immediate and a clear 16 high bit, and MOVT implies moving a 16-bit
high immediate.

How to do it…
There can be various ways to implement this multiple instruction lowering. We can do this by using
pseudo-instructions or in the selection DAG-to-DAG phase.

1. To do it without pseudo-instructions, define some constraints. The two instructions must be
ordered. MOVW clears the high 16 bits. Its output is read by MOVT to fill the high 16 bits. This
can be done by specifying the constraints in tablegen:

def MOVLOi16 : MOV<0b1000, "movw", (ins i32imm:$imm),
 [(set i32:$dst, i32imm_lo:$imm)]>;
def MOVHIi16 : MOV<0b1010, "movt", (ins GRRegs:$src1, i32imm:$imm),
 [/* No Pattern */]>;

The second way is to define a pseudo-instruction in the .td file:

def MOVi32 : InstTOY<(outs GRRegs:$dst), (ins i32imm:$src), "", [(set
i32:$dst, (movei32 imm:$src))]> {
 let isPseudo = 1;
}

2. The pseudo-instruction is then lowered by a target function in the TOYInstrInfo.cpp file:

bool TOYInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterato r MI) const
{
 if (MI->getOpcode() == TOY::MOVi32){
 DebugLoc DL = MI->getDebugLoc();
 MachineBasicBlock &MBB = *MI->getParent();

 const unsigned DstReg = MI->getOperand(0).getReg();
 const bool DstIsDead = MI->getOperand(0).isDead();

 const MachineOperand &MO = MI->getOperand(1);

 auto LO16 = BuildMI(MBB, MI, DL, get(TOY::MOVLOi16), DstReg);
 auto HI16 = BuildMI(MBB, MI, DL, get(TOY::MOVHIi16))
 .addReg(DstReg, RegState::Define |
getDeadRegState(DstIsDead))
 .addReg(DstReg);

 MBB.erase(MI);
 return true;
 }
}

3. Compile the entire LLVM project:

For example, an ex.ll file with IR will look like this:

define i32 @foo(i32 %a) #0 {
%b = add nsw i32 %a, 65537 ; 0x00010001
ret i32 %b
}

The assembly generated will look like this:

movw r1, #1
movt r1, #1
add r0, r0, r1
b lr

How it works…
The first instruction, movw, will move 1 in the lower 16 bits and clear the high 16 bits. So in r1,
0x00000001 will be written by the first instruction. In the next instruction, movt, the higher 16 bits
will be written. So in r1, 0x0001XXXX will be written, without disturbing the lower bits. Finally, the
r1 register will have 0x00010001 in it. Whenever a pseudo-instruction is encountered as specified in
the .td file, its expand function is called to specify what the pseudo-instruction will expand to.

In the preceding case, the mov32 immediate was to be implemented by two instructions: movw (the
lower 16 bits) and movt (the higher 16 bits). It was marked as a pseudo-instruction in the .td file.
When this pseudo-instruction needs to be emitted, its expand function is called, which builds two
machine instructions: MOVLOi16 and MOVHIi16. These map to the movw and movt instructions of the
target architecture.

See also
To dive deep into implementing such lowering of multiple instructions, look at the ARM target
implementation in the LLVM source code in the lib/Target/ARM/ARMInstrInfo.td file.

Registering a target
For running the llc tool in the TOY target architecture, it has to be registered with the llc tool. This
recipe demonstrates which configuration files need to be modified to register a target. The build files
are modified in this recipe.

How to do it…
To register a target with a static compiler, follow these steps:

1. First, add the entry of the TOY backend to llvm_root_dir/CMakeLists.txt:

set(LLVM_ALL_TARGETS
 AArch64
 ARM
 …
 …
 TOY
)

2. Then add the toy entry to llvm_root_dir/include/llvm/ADT/Triple.h:

class Triple {
public:
 enum ArchType {
 UnknownArch,

 arm, // ARM (little endian): arm, armv.*, xscale
 armeb, // ARM (big endian): armeb
 aarch64, // AArch64 (little endian): aarch64
 …
 …

toy // TOY: toy
};

3. Add the toy entry to llvm_root_dir/include/llvm/ MC/MCExpr.h:

class MCSymbolRefExpr : public MCExpr {
public:
enum VariantKind {
...
VK_TOY_LO,
VK_TOY_HI,
};

4. Add the toy entry to llvm_root_dir/include/llvm/ Support/ELF.h:

enum {
 EM_NONE = 0, // No machine
 EM_M32 = 1, // AT&T WE 32100
 …
 …

 EM_TOY = 220 // whatever is the next number
};

5. Then, add the toy entry to lib/MC/MCExpr.cpp:

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
switch (Kind) {

 …
 …
 case VK_TOY_LO: return "TOY_LO";
 case VK_TOY_HI: return "TOY_HI";
 }
…
}

6. Next, add the toy entry to lib/Support/Triple.cpp:

const char *Triple::getArchTypeName(ArchType Kind) {
 switch (Kind) {
 …
 …
 case toy: return "toy";

}

const char *Triple::getArchTypePrefix(ArchType Kind) {
 switch (Kind) {
 …
 …
case toy: return "toy";
 }
}

Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
…
…
 .Case("toy", toy)
…
}

static Triple::ArchType parseArch(StringRef ArchName) {
…
…
 .Case("toy", Triple::toy)
…
}

static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch) {
…
…
case llvm::Triple::toy:
 return 32;

…
…
}

Triple Triple::get32BitArchVariant() const {
…
…
case Triple::toy:
 // Already 32-bit.
 break;
…
}

Triple Triple::get64BitArchVariant() const {
…
…
case Triple::toy:
 T.setArch(UnknownArch);
 break;

…
…
}

7. Add the toy directory entry to lib/Target/LLVMBuild.txt:

[common]
subdirectories = ARM AArch64 CppBackend Hexagon MSP430 … … TOY

8. Create a new file called TOY.h in the lib/Target/TOY folder:

#ifndef TARGET_TOY_H
#define TARGET_TOY_H

#include "MCTargetDesc/TOYMCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"

namespace llvm {
class TargetMachine;
class TOYTargetMachine;

FunctionPass *createTOYISelDag(TOYTargetMachine &TM,
 CodeGenOpt::Level OptLevel);
} // end namespace llvm;

#endif

9. Create a new folder called TargetInfo in the lib/Target/TOY folder. Inside that folder, create
a new file called TOYTargetInfo.cpp, as follows:

#include "TOY.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

Target llvm::TheTOYTarget;

extern "C" void LLVMInitializeTOYTargetInfo() {
 RegisterTarget<Triple::toy> X(TheTOYTarget, "toy", "TOY");
}

10. In the same folder, create the CMakeLists.txt file:

add_llvm_library(LLVMTOYInfo
 TOYTargetInfo.cpp
)

11. Create an LLVMBuild.txt file:

[component_0]
type = Library
name = TOYInfo
parent = TOY
required_libraries = Support
add_to_library_groups = TOY

12. In the lib/Target/TOY folder, create a file called TOYTargetMachine.cpp:

#include "TOYTargetMachine.h"
#include "TOY.h"
#include "TOYFrameLowering.h"
#include "TOYInstrInfo.h"
#include TOYISelLowering.h"
#include "TOYSelectionDAGInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

TOYTargetMachine::TOYTargetMachine(const Target &T, StringRef TT, StringRef
CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
 CodeGenOpt::Level OL)
 : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
 Subtarget(TT, CPU, FS, *this) {
 initAsmInfo();
}

namespace {
class TOYPassConfig : public TargetPassConfig {
public:
 TOYPassConfig(TOYTargetMachine *TM, PassManagerBase &PM)
 : TargetPassConfig(TM, PM) {}

 TOYTargetMachine &getTOYTargetMachine() const {
 return getTM<TOYTargetMachine>();
 }

 virtual bool addPreISel();
 virtual bool addInstSelector();

 virtual bool addPreEmitPass();
};
} // namespace

TargetPassConfig *TOYTargetMachine::createPassConfig(PassManagerBase &PM) {
 return new TOYPassConfig(this, PM);
}

bool TOYPassConfig::addPreISel() { return false; }

bool TOYPassConfig::addInstSelector() {
 addPass(createTOYISelDag(getTOYTargetMachine(), getOptLevel()));
 return false;
}

bool TOYPassConfig::addPreEmitPass() { return false; }

// Force static initialization.
extern "C" void LLVMInitializeTOYTarget() {
 RegisterTargetMachine<TOYTargetMachine> X(TheTOYTarget);
}

void TOYTargetMachine::addAnalysisPasses(PassManagerBase &PM) {}

13. Create a new folder called MCTargetDesc and a new file called TOYMCTargetDesc.h:

#ifndef TOYMCTARGETDESC_H
#define TOYMCTARGETDESC_H

#include "llvm/Support/DataTypes.h"

namespace llvm {
class Target;
class MCInstrInfo;
class MCRegisterInfo;
class MCSubtargetInfo;
class MCContext;
class MCCodeEmitter;
class MCAsmInfo;
class MCCodeGenInfo;
class MCInstPrinter;
class MCObjectWriter;
class MCAsmBackend;

class StringRef;
class raw_ostream;

extern Target TheTOYTarget;

MCCodeEmitter *createTOYMCCodeEmitter(const MCInstrInfo &MCII, const
MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx);

MCAsmBackend *createTOYAsmBackend(const Target &T, const MCRegisterInfo
&MRI, StringRef TT, StringRef CPU);

MCObjectWriter *createTOYELFObjectWriter(raw_ostream &OS, uint8_t OSABI);

} // End llvm namespace

#define GET_REGINFO_ENUM
#include "TOYGenRegisterInfo.inc"

#define GET_INSTRINFO_ENUM
#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_ENUM
#include "TOYGenSubtargetInfo.inc"

#endif

14. Create one more file, called TOYMCTargetDesc.cpp, in the same folder:

#include "TOYMCTargetDesc.h"
#include "InstPrinter/TOYInstPrinter.h"
#include "TOYMCAsmInfo.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"

#define GET_INSTRINFO_MC_DESC
#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_MC_DESC
#include "TOYGenSubtargetInfo.inc"

#define GET_REGINFO_MC_DESC
#include "TOYGenRegisterInfo.inc"

using namespace llvm;

static MCInstrInfo *createTOYMCInstrInfo() {
 MCInstrInfo *X = new MCInstrInfo();
 InitTOYMCInstrInfo(X);
 return X;
}

static MCRegisterInfo *createTOYMCRegisterInfo(StringRef TT) {
 MCRegisterInfo *X = new MCRegisterInfo();
 InitTOYMCRegisterInfo(X, TOY::LR);
 return X;
}

static MCSubtargetInfo *createTOYMCSubtargetInfo(StringRef TT, StringRef
CPU,
 StringRef FS) {

 MCSubtargetInfo *X = new MCSubtargetInfo();
 InitTOYMCSubtargetInfo(X, TT, CPU, FS);
 return X;
}

static MCAsmInfo *createTOYMCAsmInfo(const MCRegisterInfo &MRI, StringRef
TT) {
 MCAsmInfo *MAI = new TOYMCAsmInfo(TT);
 return MAI;
}

static MCCodeGenInfo *createTOYMCCodeGenInfo(StringRef TT, Reloc::Model RM,
 CodeModel::Model CM,
 CodeGenOpt::Level OL) {
 MCCodeGenInfo *X = new MCCodeGenInfo();
 if (RM == Reloc::Default) {
 RM = Reloc::Static;
 }
 if (CM == CodeModel::Default) {
 CM = CodeModel::Small;
 }
 if (CM != CodeModel::Small && CM != CodeModel::Large) {
 report_fatal_error("Target only supports CodeModel Small or Large");
 }

 X->InitMCCodeGenInfo(RM, CM, OL);
 return X;
}

static MCInstPrinter *
createTOYMCInstPrinter(const Target &T, unsigned SyntaxVariant,
 const MCAsmInfo &MAI, const MCInstrInfo &MII,
 const MCRegisterInfo &MRI, const MCSubtargetInfo
&STI) {
 return new TOYInstPrinter(MAI, MII, MRI);
}

static MCStreamer *
createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS, bool
isVerboseAsm, bool useDwarfDirectory,MCInstPrinter *InstPrint, MCCodeEmitter
*CE,MCAsmBackend *TAB, bool ShowInst) {
 return createAsmStreamer(Ctx, OS, isVerboseAsm, useDwarfDirectory,
InstPrint, CE, TAB, ShowInst);
}

static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
 MCContext &Ctx, MCAsmBackend &MAB,
 raw_ostream &OS,
 MCCodeEmitter *Emitter,
 const MCSubtargetInfo &STI,
 bool RelaxAll,
 bool NoExecStack) {
 return createELFStreamer(Ctx, MAB, OS, Emitter, false, NoExecStack);
}

// Force static initialization.
extern "C" void LLVMInitializeTOYTargetMC() {
 // Register the MC asm info.
 RegisterMCAsmInfoFn X(TheTOYTarget, createTOYMCAsmInfo);

 // Register the MC codegen info.
 TargetRegistry::RegisterMCCodeGenInfo(TheTOYTarget,
createTOYMCCodeGenInfo);

 // Register the MC instruction info.
 TargetRegistry::RegisterMCInstrInfo(TheTOYTarget, createTOYMCInstrInfo);

 // Register the MC register info.
 TargetRegistry::RegisterMCRegInfo(TheTOYTarget, createTOYMCRegisterInfo);

 // Register the MC subtarget info.
 TargetRegistry::RegisterMCSubtargetInfo(TheTOYTarget,
 createTOYMCSubtargetInfo);

 // Register the MCInstPrinter
 TargetRegistry::RegisterMCInstPrinter(TheTOYTarget,
createTOYMCInstPrinter);

 // Register the ASM Backend.  
TargetRegistry::RegisterMCAsmBackend(TheTOYTarget, createTOYAsmBackend);

 // Register the assembly streamer.
 TargetRegistry::RegisterAsmStreamer(TheTOYTarget, createMCAsmStreamer);

 // Register the object streamer.
 TargetRegistry::RegisterMCObjectStreamer(TheTOYTarget, createMCStreamer);

 // Register the MCCodeEmitter
 TargetRegistry::RegisterMCCodeEmitter(TheTOYTarget,
createTOYMCCodeEmitter);
}

15. In the same folder, create an LLVMBuild.txt file:

[component_0]
type = Library
name = TOYDesc
parent = TOY
required_libraries = MC Support TOYAsmPrinter TOYInfo
add_to_library_groups = TOY

16. Create a CMakeLists.txt file:

add_llvm_library(LLVMTOYDesc
 TOYMCTargetDesc.cpp)

How it works…

Build the enitre LLVM project, as follows:

$ cmake llvm_src_dir –DCMAKE_BUILD_TYPE=Release – DLLVM_TARGETS_TO_BUILD="TOY"
$ make

Here, we have specified that we are building the LLVM compiler for the toy target. After the build
completes, check whether the TOY target appears with the llc command:

$ llc –version
…
…
Registered Targets :
toy – TOY

See also
For a more detailed description about complex targets that involve pipelining and scheduling,
follow the chapters in Tutorial: Creating an LLVM Backend for the Cpu0 Architecture by Chen
Chung-Shu and Anoushe Jamshidi

Chapter 9. Using LLVM for Various Useful
Projects
In this chapter, we will cover the following recipes:

Exception handling in LLVM
Using sanitizers
Writing the garbage collector with LLVM
Converting LLVM IR to JavaScript
Using the Clang Static Analyzer
Using bugpoint
Using LLDB
Using LLVM utility passes

Introduction
Until now, you have learned how to write the frontend of a compiler, write optimizations and create a
backend. In this chapter, the last of this book, we will look into some other features that the LLVM
infrastructure provides and how we can use them in our projects. We won't be diving very deep into
the details of the topics in this chapter. The main point is to let you know about these important tools
and techniques, which are hot points in LLVM.

Exception handling in LLVM
In this recipe, we will look into the exception handling infrastructure of LLVM. We will discuss how
the exception handling information looks in the IR and the intrinsic functions provided by LLVM for
exception handling.

Getting ready...
You must understand how exception handling works normally and the concepts of try, catch and
throw and so on. You must also have Clang and LLVM installed in your path.

How to do it…
We will take an example to describe how exception handling works in LLVM:

1. Open a file to write down the source code, and enter the source code to test exception handling:

$ cat eh.cpp
class Ex1 {};
void throw_exception(int a, int b) {
 Ex1 ex1;
 if (a > b) {
 throw ex1;
 }
}

int test_try_catch() {
 try {
 throw_exception(2, 1);
 }
 catch(...) {
 return 1;
 }
 return 0;
}

2. Generate the bitcode file using the following command:

$ clang -c eh.cpp -emit-llvm -o eh.bc

3. To view the IR on the screen, run the following command, which will give you the output as
shown:

$ llvm-dis eh.bc -o -
; ModuleID = 'eh.bc'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

%class.Ex1 = type { i8 }

@_ZTVN10__cxxabiv117__class_type_infoE = external global i8*
@_ZTS3Ex1 = linkonce_odr constant [5 x i8] c"3Ex1\00"
@_ZTI3Ex1 = linkonce_odr constant { i8*, i8* } { i8* bitcast (i8**
getelementptr inbounds (i8** @_ZTVN10__cxxabiv117__class_type_infoE, i64 2)
to i8*), i8* getelementptr inbounds ([5 x i8]* @_ZTS3Ex1, i32 0, i32 0) }

; Function Attrs: uwtable
define void @_Z15throw_exceptionii(i32 %a, i32 %b) #0 {
 %1 = alloca i32, align 4
 %2 = alloca i32, align 4
 %ex1 = alloca %class.Ex1, align 1
 store i32 %a, i32* %1, align 4
 store i32 %b, i32* %2, align 4
 %3 = load i32* %1, align 4
 %4 = load i32* %2, align 4
 %5 = icmp sgt i32 %3, %4
 br i1 %5, label %6, label %9

; <label>:6 ; preds = %0
 %7 = call i8* @__cxa_allocate_exception(i64 1) #1
 %8 = bitcast i8* %7 to %class.Ex1*
 call void @__cxa_throw(i8* %7, i8* bitcast ({ i8*, i8* }* @_ZTI3Ex1 to
i8*), i8* null) #2
 unreachable

; <label>:9 ; preds = %0
 ret void
}

declare i8* @__cxa_allocate_exception(i64)

declare void @__cxa_throw(i8*, i8*, i8*)

; Function Attrs: uwtable
define i32 @_Z14test_try_catchv() #0 {
 %1 = alloca i32, align 4
 %2 = alloca i8*
 %3 = alloca i32
 %4 = alloca i32
 invoke void @_Z15throw_exceptionii(i32 2, i32 1)
 to label %5 unwind label %6

; <label>:5 ; preds = %0
 br label %13

; <label>:6 ; preds = %0
 %7 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)*
@__gxx_personality_v0 to i8*)
 catch i8* null
 %8 = extractvalue { i8*, i32 } %7, 0
 store i8* %8, i8** %2
 %9 = extractvalue { i8*, i32 } %7, 1

 store i32 %9, i32* %3
 br label %10

; <label>:10 ; preds = %6
 %11 = load i8** %2
 %12 = call i8* @__cxa_begin_catch(i8* %11) #1
 store i32 1, i32* %1
 store i32 1, i32* %4
 call void @__cxa_end_catch()
 br label %14

; <label>:13 ; preds = %5
 store i32 0, i32* %1
 br label %14

; <label>:14 ; preds = %13, %10
 %15 = load i32* %1
 ret i32 %15
}

declare i32 @__gxx_personality_v0(...)

declare i8* @__cxa_begin_catch(i8*)

declare void @__cxa_end_catch()

attributes #0 = { uwtable "less-precise-fpmad"="false" "no-frame-pointer-
elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-
nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-
math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind }
attributes #2 = { noreturn }

!llvm.ident = !{!0}

!0 = metadata !{metadata !"clang version 3.6.0 (220636)"}

How it works…
In LLVM, if an exception is thrown, the runtime tries its best to find a handler. It tries to find an
exception frame corresponding to the function where the exception was thrown. This exception frame
contains a reference to the exception table, which contains the implementation—how to handle the
exception when a programming language supports exception handling. When the language does not
support exception handling, the information on how to unwind the current activation and restore the
state of the prior activation is found in this exception frame.

Let's look at the preceding example to see how to generate exception handling code with LLVM.

The try block is translated to invoke instruction in LLVM:

invoke void @_Z15throw_exceptionii(i32 2, i32 1)
 to label %5 unwind label %6

The preceding line tells the compiler how it should handle an exception if the throw_exception
function throws it. If no exception is thrown, then normal execution will take place through the %5
label. But if an exception is thrown, it will branch into the %6 label, which is the landing pad. This
corresponds roughly to the catch portion of a try/catch sequence. When execution resumes at a
landing pad, it receives an exception structure and a selector value corresponding to the type of
exception thrown. The selector is then used to determine which catch function should actually
process the exception. In this case, it looks something like this:

%7 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)*
@__gxx_personality_v0 to i8*)
 catch i8* null

The %7 in the preceding code snippet represents the information describing the exception. The { i8*,
i32 } part of the code describes the type of information. The i8* part of the code represents the
exception pointer part, and i32 is the selector value. In this case, we have only one selector value, as
the catch function accepts all types of exception objects thrown. The @__gxx_personality_v0
function is the personality function. It receives the context of the exception, an exception structure
containing the exception object type and value, and a reference to the exception table for the current
function. The personality function for the current compile unit is specified in a common exception
frame. In our case, the @__gxx_personality_v0 function represents the fact that we are dealing with
C++ exceptions.

So, the %8 = extractvalue { i8*, i32 } %7, 0 will represent the exception object, and %9 =
extractvalue { i8*, i32 } %7, 1 represents the selector value.

The following are some noteworthy IR functions:

__cxa_throw: This is a function used to throw an exception
__cxa_begin_catch: This takes an exception structure reference as an argument and returns the
value of the exception object
__cxa_end_catch: This locates the most recently caught exception and decrements its handler
count, removing the exception from the caught state if this counter goes down to zero

See also
To understand the exception format used by LLVM, go to
http://llvm.org/docs/ExceptionHandling.html#llvm-code-generation.

http://llvm.org/docs/ExceptionHandling.html#llvm-code-generation

Using sanitizers
You might have used tools such as Valgrind for memory debugging. LLVM also provides us with tools
for memory debugging, such as the address sanitizer, memory sanitizer, and so on. These tools are
very fast compared to Valgrind, even though they are not as mature as Valgrind. Most of these tools
are in their experimental stage, so if you want, you can contribute to the open source development of
these tools.

Getting ready
To make use of these sanitizers, we need to check out the code for compiler-rt from the LLVM
SVN:

cd llvm/projects
svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt

Build LLVM as we did in Chapter 1, LLVM Design and Use. By doing so, we get the runtime
libraries required.

How to do it…
Now, we will test the address sanitizer on a test code.

1. Write a test case to check the address sanitizer:

$ cat asan.c
int main() {
int a[5];
int index = 6;
int retval = a[index];
return retval;
}

2. Compile the test code using the fsanitize=address command-line argument for using the
address sanitizer:

$ clang -fsanitize=address asan.c

3. Generate the output of running the address sanitizer using the following command:

$ ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out

Here's the output:

How it works…
The LLVM address sanitizer works on the principle of code instrumentation. The tool consists of a
compiler instrumentation module and a runtime library. The code instrumentation part is done by the
pass of LLVM, which runs on passing the fsanitize=address command-line argument, as is done in
the preceding example. The runtime library replaces the malloc and free functions in the code with
custom-made code. Before we go ahead and discuss the details of how code instrumentation is done,
here we must know that the virtual address space is divided into two disjointed classes: the main
application memory, which is used by the regular application code; and the shadow memory, which
contains the shadow values (or metadata).

The shadow memory and the main application memory are linked to each other. Poisoning a byte in
the main memory means writing a special value into the corresponding shadow memory.

Let's come back to the address sanitizer; the memory around the regions allocated by the malloc
function is poisoned. The memory freed by the free function is placed in quarantine and is also
poisoned. Every memory access in the program is transformed by the compiler in the following way.

At first, it is like this:

*address = ...;

After transformation, it becomes the following:

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}
*address = ...;

This means that if it finds any invalid access to this memory, it reports an error.

In the preceding example, we wrote a piece of code for a buffer overrun, accessing an array that is
out of bounds. Here, the instrumentation of code is done on the address just before and after the array.
So, when we access the array beyond its upper bound, we try accessing the red zone. Hence, the
address sanitizer gives us a stack buffer overflow report.

See also…
You can check out the documentation page at http://clang.llvm.org/docs/AddressSanitizer.html
for more information.
You can also check out the other sanitizers in LLVM using the following links:

http://clang.llvm.org/docs/MemorySanitizer.html

http://clang.llvm.org/docs/ThreadSanitizer.html

https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

Writing the garbage collector with LLVM
Garbage collection is a technique of memory management where the collector tries to reclaim the
memory occupied by objects that are no longer in use. This frees the programmer from of being
required to keep track of the lifetimes of heap objects.

In this recipe, we will see how to integrate LLVM into a compiler for a language that supports
garbage collection. LLVM does not itself provide a garbage collector, but provides a framework for
describing the garbage collector's requirements to the compiler.

Getting ready
LLVM must be built and installed.

How to do it…
We will see in the following recipe how the LLVM IR code, with garbage collection intrinsic
functions, is converted to the corresponding machine assembly code:

1. Write the test code:

$ cat testgc.ll

declare i8* @llvm_gc_allocate(i32)
declare void @llvm_gc_initialize(i32)

declare void @llvm.gcroot(i8**, i8*)
declare void @llvm.gcwrite(i8*, i8*, i8**)

define i32 @main() gc "shadow-stack" {
entry:
 %A = alloca i8*
 %B = alloca i8**

 call void @llvm_gc_initialize(i32 1048576) ; Start with 1MB heap

 ;; void *A;
 call void @llvm.gcroot(i8** %A, i8* null)

 ;; A = gcalloc(10);
 %Aptr = call i8* @llvm_gc_allocate(i32 10)
 store i8* %Aptr, i8** %A

 ;; void **B;
 %tmp.1 = bitcast i8*** %B to i8**
 call void @llvm.gcroot(i8** %tmp.1, i8* null)

 ;; B = gcalloc(4);
 %B.upgrd.1 = call i8* @llvm_gc_allocate(i32 8)

 %tmp.2 = bitcast i8* %B.upgrd.1 to i8**
 store i8** %tmp.2, i8*** %B

 ;; *B = A;
 %B.1 = load i8**, i8*** %B
 %A.1 = load i8*, i8** %A
 call void @llvm.gcwrite(i8* %A.1, i8* %B.upgrd.1, i8** %B.1)

 br label %AllocLoop

AllocLoop:
 %i = phi i32 [0, %entry], [%indvar.next, %AllocLoop]
 ;; Allocated mem: allocated memory is immediately dead.
 call i8* @llvm_gc_allocate(i32 100)

 %indvar.next = add i32 %i, 1
 %exitcond = icmp eq i32 %indvar.next, 10000000
 br i1 %exitcond, label %Exit, label %AllocLoop

Exit:
 ret i32 0
}

declare void @__main()

2. Use the llc tool to generate the assembly code and view the assembly code using the cat
command:

$ llc testgc.ll

$ cat testgc.s
 .text
 .file "testgc.ll"
 .globl main
 .align 16, 0x90
 .type main,@function
main: # @main
.Lfunc_begin0:
 .cfi_startproc
 .cfi_personality 3, __gcc_personality_v0
 .cfi_lsda 3, .Lexception0
BB#0: # %entry
 pushq %rbx
.Ltmp9:
 .cfi_def_cfa_offset 16
 subq $32, %rsp
.Ltmp10:
 .cfi_def_cfa_offset 48
.Ltmp11:
 .cfi_offset %rbx, -16
 movq llvm_gc_root_chain(%rip), %rax
 movq $__gc_main, 8(%rsp)

 movq $0, 16(%rsp)
 movq %rax, (%rsp)
 leaq (%rsp), %rax
 movq %rax, llvm_gc_root_chain(%rip)
 movq $0, 24(%rsp)
.Ltmp0:
 movl $1048576, %edi # imm = 0x100000
 callq llvm_gc_initialize
.Ltmp1:
BB#1: # %entry.cont3
.Ltmp2:
 movl $10, %edi
 callq llvm_gc_allocate
.Ltmp3:
BB#2: # %entry.cont2
 movq %rax, 16(%rsp)
.Ltmp4:
 movl $8, %edi
 callq llvm_gc_allocate
.Ltmp5:
BB#3: # %entry.cont
 movq %rax, 24(%rsp)
 movq 16(%rsp), %rcx
 movq %rcx, (%rax)
 movl $10000000, %ebx # imm = 0x989680
 .align 16, 0x90
.LBB0_4: # %AllocLoop
 # =>This Inner Loop Header: Depth=1
.Ltmp6:
 movl $100, %edi
 callq llvm_gc_allocate
.Ltmp7:
BB#5: # %AllocLoop.cont
 # in Loop: Header=BB0_4 Depth=1
 decl %ebx
 jne .LBB0_4
BB#6: # %Exit
 movq (%rsp), %rax
 movq %rax, llvm_gc_root_chain(%rip)
 xorl %eax, %eax
 addq $32, %rsp
 popq %rbx
 retq
.LBB0_7: # %gc_cleanup
.Ltmp8:
 movq (%rsp), %rcx
 movq %rcx, llvm_gc_root_chain(%rip)
 movq %rax, %rdi
 callq _Unwind_Resume
.Lfunc_end0:
 .size main, .Lfunc_end0-main
 .cfi_endproc

 .section .gcc_except_table,"a",@progbits
 .align 4
GCC_except_table0:
.Lexception0:
 .byte 255 # @LPStart Encoding = omit
 .byte 3 # @TType Encoding = udata4
 .asciz "\234" # @TType base offset
 .byte 3 # Call site Encoding = udata4
 .byte 26 # Call site table length
 .long .Ltmp0-.Lfunc_begin0 # >> Call Site 1 <<
 .long .Ltmp7-.Ltmp0 # Call between .Ltmp0 and .Ltmp7
 .long .Ltmp8-.Lfunc_begin0 # jumps to .Ltmp8
 .byte 0 # On action: cleanup
 .long .Ltmp7-.Lfunc_begin0 # >> Call Site 2 <<
 .long .Lfunc_end0-.Ltmp7 # Call between .Ltmp7 and .Lfunc_end0
 .long 0 # has no landing pad
 .byte 0 # On action: cleanup
 .align 4

 .type llvm_gc_root_chain,@object # @llvm_gc_root_chain
 .bss
 .weak llvm_gc_root_chain
 .align 8
llvm_gc_root_chain:
 .quad 0
 .size llvm_gc_root_chain, 8

 .type __gc_main,@object # @__gc_main
 .section .rodata,"a",@progbits
 .align 8
__gc_main:
 .long 2 # 0x2
 .long 0 # 0x0
 .size __gc_main, 8

 .section ".note.GNU-stack","",@progbits

How it works…
In the preceding code, in the main function, we are using the built-in GC collector strategy called
shadow-stack, which maintains a linked list of stack roots():

define i32 @main() gc "shadow-stack"

It mirrors the machine stack. We can provide any other technique, if we want to, by specifying its
name after the function name in this format, gc "strategy name". This strategy name can either be
the built-in strategy or our own custom strategy for garbage collection.

To identify the roots, that is, the references to the heap object, LLVM makes use of the intrinsic
function @llvm.gcroot or the .statepoint relocation sequence. The llvm.gcroot intrinsic

function informs LLVM that a stack variable references an object on the heap and it needs to be
tracked by the collector. In the preceding code, the following line is the call to the llvm.gcroot
function to mark the %tmp.1 stack variable:

call void @llvm.gcroot(i8** %tmp.1, i8* null)

The llvm.gcwrite function is a write barrier. This means that whenever a program on which
garbage collection is being done, it writes a pointer to a field of a heap object, the collector is
informed about that. The llvm.gcread intrinsic function is also present, which informs the garbage
collector when the program reads a pointer to a field of a heap object. The following line of code
writes the %A.1 value to the %B.upgrd heap object:

call void @llvm.gcwrite(i8* %A.1, i8* %B.upgrd.1, i8** %B.1)

Note

Note that LLVM does not provide a garbage collector. It should be a part of the runtime library of the
language. The preceding explanation deals with the infrastructure that LLVM provides for describing
garbage collector requirements to the compiler.

See also
See http://llvm.org/docs/GarbageCollection.html for the documentation on garbage collection.
Also, check out http://llvm.org/docs/Statepoints.html for an alternative method of garbage
collection.

http://llvm.org/docs/GarbageCollection.html
http://llvm.org/docs/Statepoints.html

Converting LLVM IR to JavaScript
In this recipe, we will briefly discuss how we can convert LLVM IR to JavaScript.

Getting ready
To convert IR to JavaScript, perform the following steps:

1. We will make use of the emscripten LLVM to JavaScript compiler. You need to download the
SDK provided at https://kripken.github.io/emscripten-site/docs/getting_started/downloads.html .
You can also build it from the source code, but just for experimenting, you can use the SDK that
comes with the toolchain.

2. After downloading the SDK, extract it to a location and go to the root folder of the download.
3. Install the default-jre, nodejs, cmake, build-essential, and git dependencies.
4. Execute the following commands to install the SDK:

./emsdk update

./emsdk install latest

./emsdk activate latest

5. See the ~/emscripten script to check whether it has the correct values, and if not, update it
accordingly.

How to do it…
Perform the following steps:

1. Write the test code for the conversion:

$ cat test.c
#include<stdio.h>

int main() {
 printf("hi, user!\n");
 return 0;
}

2. Convert the code to the LLVM IR:

$ clang –S –emit-llvm test.c

3. Now use the emcc executable located in the emsdk_portable/emscripten/master directory
to take this .ll file as the input and convert it into JavaScript:

$./emcc test.ll

4. The output file generated is the a.out.js file. We can execute this file using the following
command:

$ nodejs a.out.js

https://kripken.github.io/emscripten-site/docs/getting_started/downloads.html

hi, user!

See more
To know more details, visit https://github.com/kripken/emscripten

https://github.com/kripken/emscripten

Using the Clang Static Analyzer
In this recipe, you will learn about the static analysis of code, which is carried out by the Clang
Static Analyzer. It is built on top of Clang and LLVM. The static analysis engine used by the Clang
Static Analyzer is a Clang library, and it has the capability to be reused in different contexts by
different clients.

We will take the example of the divide-by-zero defect and show you how the Clang Static Analyzer
handles this defect.

Getting ready
You need to build and install LLVM along with Clang.

How to do it…
Perform the following steps:

1. Create a test file and write the test code in it:

$ cat sa.c
int func() {
int a = 0;
int b = 1/a;
return b;
}

2. Run the Clang Static Analyzer by passing the command-line options shown in the following
command, and get the output on the screen:

$ clang -cc1 -analyze -analyzer-checker=core.DivideZero sa.c
sa.c:3:10: warning: Division by zero
int b = 1/a;
 ~^~
1 warning generated.

How it works…
The static analyzer core performs the symbolic execution of the program. The input values are
represented by symbolic values. The values of the expressions are calculated by the analyzer using
the input symbol and the path. The execution of the code is path-sensitive, and hence every possible
path is analyzed.

While executing, the execution traces are represented by an exploded graph. Each node of this
ExplodedGraph is called ExplodedNode. It consists of a ProgramState object, which represents the
abstract state of the program; and a ProgramPoint object, which represents the corresponding

location in the program.

For each type of bug, there is an associated checker. Each of these checkers is linked to the core in a
way by which they contribute to the ProgramState construction. Each time the analyzer engine
explores a new statement, it notifies each checker registered to listen for that statement, giving it an
opportunity to either report a bug or modify the state.

Each checker registers for some events and callbacks such as PreCall (prior to the call of the
function), DeadSymbols (when a symbol goes dead), and so on. They are notified in the case of the
requested events, and they implement the action to be taken for such events.

In this recipe, we looked at a divide-by-zero checker, which reports when a divide-by-zero condition
occurs. The checker, in this case, registers for the PreStmt callback, before a statement gets
executed. It then checks the operator of the next statement to be executed, and if it finds a division
operator, it looks for a zero value. If it finds such a possible value, it reports a bug.

See also
For more detailed information about the static analyzer and checkers, visit http://clang-
analyzer.llvm.org/checker_dev_manual.html

http://clang-analyzer.llvm.org/checker_dev_manual.html

Using bugpoint
In this recipe, you will learn about a useful tool provided by LLVM infrastructure, known as bugpoint.
Bugpoint allows us to narrow down the source of problems in the LLVM's tools and passes. It is
helpful in debugging optimizer crashes, miscompilations by optimizers, or bad native code
generation. Using this, we can get a small test case for our problem and work on that.

Getting ready
You need to build and install LLVM.

How to do it…
Perform the following steps:

1. Write the test cases using the bugpoint tool:

$ cat crash-narrowfunctiontest.ll
define i32 @foo() { ret i32 1 }

define i32 @test() {
 call i32 @test()
 ret i32 %1
}
define i32 @bar() { ret i32 2 }

2. Use bugpoint in this test case to view the results :

$ bugpoint -load path-to-llvm/build/./lib/BugpointPasses.so crash-
narrowfunctiontest.ll -output-prefix crash-narrowfunctiontest.ll.tmp -
bugpoint-cras
hcalls -silence-passes
Read input file : 'crash-narrowfunctiontest.ll'
*** All input ok
Running selected passes on program to test for crash: Crashed: Aborted (core
dumped)
Dumped core

*** Debugging optimizer crash!
Checking to see if these passes crash: -bugpoint-crashcalls: Crashed:
Aborted (core dumped)
Dumped core

*** Found crashing pass: -bugpoint-crashcalls
Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-passes.bc'

*** You can reproduce the problem with: opt crash-narrowfunctiontest.ll.tmp-
passes.bc -load
/home/mayur/LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls

*** Attempting to reduce the number of functions in the testcase
Checking for crash with only these functions: foo test bar: Crashed:
Aborted (core dumped)
Dumped core
Checking for crash with only these functions: foo test: Crashed: Aborted
(core dumped)
Dumped core
Checking for crash with only these functions: test: Crashed: Aborted (core
dumped)
Dumped core
Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-function.bc'

*** You can reproduce the problem with: opt crash-narrowfunctiontest.ll.tmp-
reduced-function.bc -load
/home/mayur/LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls
Checking for crash with only these blocks: : Crashed: Aborted (core dumped)
Dumped core
Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-blocks.bc'

*** You can reproduce the problem with: opt crash-narrowfunctiontest.ll.tmp-
reduced-blocks.bc -load
/home/mayur/LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls
Checking for crash with only 1 instruction: Crashed: Aborted (core dumped)
Dumped core

*** Attempting to reduce testcase by deleting instructions: Simplification
Level #1
Checking instruction: %1 = call i32 @test()Success!

*** Attempting to reduce testcase by deleting instructions: Simplification
Level #0
Checking instruction: %1 = call i32 @test()Success!

*** Attempting to perform final cleanups: Crashed: Aborted (core dumped)
Dumped core
Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-simplified.bc'

*** You can reproduce the problem with: opt crash-narrowfunctiontest.ll.tmp-
reduced-simplified.bc -load
/home/mayur/LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls

3. Now, to see the reduced test case, use the llvm-dis command to convert the crash-
narrowfunctiontest.ll.tmp-reduced-simplified.bc file to the .ll form. Then, view the
reduced test case:

$ llvm-dis crash-narrowfunctiontest.ll.tmp-reduced-simplified.bc
$ cat $ cat crash-narrowfunctiontest.ll.tmp-reduced-simplified.ll
define void @test() {
 call void @test()

 ret void
}

How it works…
The bugpoint tool runs all the passes specified in the command line on the test program. If any of
these passes crash, bugpoint starts the crash debugger. The crash debugger tries to reduce the list of
passes that cause this crash. Then it tries to removes unnecessary functions. Once able to reduce the
test program to a single function, it tries to deletes the edges of the control flow graph to reduce the
size of the function. After this, it proceeds to remove the individual LLVM instructions whose absence
does not impact the failure. In the end, bugpoint gives the output showing which pass is causing the
crash and a simplified reduced test case.

If the –output option wasn't specified, then bugpoint runs the program on a "safe" backend and
generated reference output. It then compares the output generated by the selected code generator. If
there is a crash, it runs the crash debugger as explained in the previous paragraph. Other than this, if
the output generated by the code generator differs from the reference output, it starts the code
generator debugger, which reduces the test case through techniques similar to those of the crash
debugger.

Finally, if the output generated by the code generator and the reference output are the same, then
bugpoint runs all the LLVM passes and checks the output against the reference output. If there is any
mismatch, then it runs the miscompilation debugger. The miscompilation debugger works by splitting
the test program into two pieces. It runs the optimizations as specified on one piece, then links the two
pieces back together, and finally executes the result. It tries to narrow down to the pass that is causing
miscompilation from the list of passes, and then pinpoints the portion of the test program that is being
miscompiled. It outputs the reduced case that is causing the miscompilation.

In the preceding test case, bugpoint checks for the crash in all functions, and ends up knowing that the
problem lies in the test function. It also tries to reduce the instructions within the function. The output
for every stage is displayed on the terminal, which is self-explanatory. In the end, it produces a
simplified reduced test case in the bitcode format, which we can convert to the LLVM IR and get the
reduced test case.

See also
To read more on bugpoint, go to http://llvm.org/docs/Bugpoint.html

http://llvm.org/docs/Bugpoint.html

Using LLDB
In this recipe, you will learn how to use the debugger known as LLDB, provided by LLVM. LLDB is a
next-generation, high-performance debugger. It is essentially built as a set of reusable components that
have advantages over the existing libraries in the larger LLVM project. You might find it quite similar
to the gdb debugging tool.

Getting ready
We will need the following before working with LLDB:

1. To use LLDB, we need to check out the LLDB source code in the llvm/tools folder:

svn co http://llvm.org/svn/llvm-project/lldb/trunk lldb

2. Build and install LLVM, which will also build LLDB simultaneously.

How to do it…
Perform the following steps:

1. Write a test case for a simple example using LLDB:

$ cat lldbexample.c
#include<stdio.h>
int globalvar = 0;

int func2(int a, int b) {
globalvar++;
return a*b;
}

int func1(int a, int b) {
globalvar++;
int d = a + b;
int e = a - b;
int f = func2(d, e);
return f;
}

int main() {
globalvar++;
int a = 5;
int b = 3;

int c = func1(a,b);
printf("%d", c);
return c;
}

2. Compile the code using Clang with the –g flag to generate the debug information:

$ clang -g lldbexample.c

3. Debug the output file generated in the previous file with LLDB. To load the output file, we need
to pass its name to LLDB:

$ lldb a.out
(lldb) target create "a.out"
Current executable set to 'a.out' (x86_64).

4. Set a breakpoint in the main function:

(lldb) breakpoint set --name main
Breakpoint 1: where = a.out'main + 15 at lldbexample.c:20, address =
0x00000000004005bf

5. To look at the list of breakpoints set, use the following command:

(lldb) breakpoint list
Current breakpoints:
1: name = 'main', locations = 1
 1.1: where = a.out'main + 15 at lldbexample.c:20, address =
a.out[0x00000000004005bf], unresolved, hit count = 0

6. Add a command to be executed when a breakpoint is hit. Here, let's add the back trace bt
command when the breakpoint on the main function is hit:

(lldb) breakpoint command add 1.1
Enter your debugger command(s). Type 'DONE' to end.
> bt
> DONE

7. Run the executable using the following command. This will hit the breakpoint on the main
function and execute the back trace(bt) command, as set in the earlier step:

(lldb) process launch
Process 2999 launched: '/home/mayur/book/chap9/a.out' (x86_64)
Process 2999 stopped
* thread #1: tid = 2999, 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20, name = 'a.out', stop reason = breakpoint 1.1
 frame #0: 0x00000000004005bf a.out'main + 15 at lldbexample.c:20
 17
 18
 19 int main() {
-> 20 globalvar++;
 21 int a = 5;
 22 int b = 3;
 23
(lldb) bt
* thread #1: tid = 2999, 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20, name = 'a.out', stop reason = breakpoint 1.1
 * frame #0: 0x00000000004005bf a.out'main + 15 at lldbexample.c:20
 frame #1: 0x00007ffff7a35ec5

libc.so.6'__libc_start_main(main=0x00000000004005b0, argc=1,
argv=0x00007fffffffda18, init=<unavailable>, fini=<unavailable>, rtld_fini=
<unavailable>, stack_end=0x00007fffffffda08) + 245 at libc-start.c:287
 frame #2: 0x0000000000400469 a.out

8. To set watchpoint on the global variable, use the following command:

(lldb) watch set var globalvar
Watchpoint created: Watchpoint 1: addr = 0x00601044 size = 4 state = enabled
type = w
 declare @ '/home/mayur/book/chap9/lldbexample.c:2'
 watchpoint spec = 'globalvar'
 new value: 0

9. To stop the execution when the value of globalvar becomes 3, use the watch command:

(lldb) watch modify -c '(globalvar==3)'
To view list of all watch points:
(lldb) watch list
Number of supported hardware watchpoints: 4
Current watchpoints:
Watchpoint 1: addr = 0x00601044 size = 4 state = enabled type = w
 declare @ '/home/mayur/book/chap9/lldbexample.c:2'
 watchpoint spec = 'globalvar'
 new value: 0
 condition = '(globalvar==3)'

10. To continue execution after the main function, use the following command. The executable will
stop when the value of globalvar becomes 3, inside the func2 function:

(lldb) thread step-over
(lldb) Process 2999 stopped
* thread #1: tid = 2999, 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6, name = 'a.out', stop reason = watchpoint 1
 frame #0: 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6
 3
 4 int func2(int a, int b) {
 5 globalvar++;
-> 6 return a*b;
 7 }
 8
 9

Watchpoint 1 hit:
old value: 0
new value: 3
(lldb) bt
* thread #1: tid = 2999, 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6, name = 'a.out', stop reason = watchpoint 1
 * frame #0: 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6
 frame #1: 0x000000000040059c a.out'func1(a=5, b=3) + 60 at

lldbexample.c:14
 frame #2: 0x00000000004005e9 a.out'main + 57 at lldbexample.c:24
 frame #3: 0x00007ffff7a35ec5
libc.so.6'__libc_start_main(main=0x00000000004005b0, argc=1,
argv=0x00007fffffffda18, init=<unavailable>, fini=<unavailable>, rtld_fini=
<unavailable>, stack_end=0x00007fffffffda08) + 245 at libc-start.c:287
 frame #4: 0x0000000000400469 a.out

11. To continue the execution of the executable use the thread continue command, which will
execute till the end as no other breakpoints are met:

(lldb) thread continue
Resuming thread 0x0bb7 in process 2999
Process 2999 resuming
Process 2999 exited with status = 16 (0x00000010)

12. To exit LLDB, use the following command:

(lldb) exit

See also
Check out http://lldb.llvm.org/tutorial.html for an exhaustive list of LLDB commands.

http://lldb.llvm.org/tutorial.html

Using LLVM utility passes
In this recipe, you will learn about LLVM's utility passes. As the name signifies, they are of much
utility to users who want to understand certain things about LLVM that are not easy to understand by
going through code. We will look into two utility passes that represent the CFG of a program.

Getting ready
You need to build and install LLVM, and install the graphviz tool. You can download graphviz
from http://www.graphviz.org/Download.php, or install it from your machine's package manager, if it
is in the list of available packages.

How to do it...
Perform the following steps:

1. Write the test code required for running the utility passes. This test code consists of if blocks, it
will create a new edge in the CFG:

$ cat utility.ll
declare double @foo()

declare double @bar()

define double @baz(double %x) {
entry:
 %ifcond = fcmp one double %x, 0.000000e+00
 br i1 %ifcond, label %then, label %else

then: ; preds = %entry
 %calltmp = call double @foo()
 br label %ifcont

else: ; preds = %entry
 %calltmp1 = call double @bar()
 br label %ifcont

ifcont: ; preds = %else, %then
 %iftmp = phi double [%calltmp, %then], [%calltmp1, %else]
 ret double %iftmp
}

2. Run the view-cfg-only pass to view the CFG of a function without the function body:

$ opt –view-cfg-only utility.ll

3. Now, view the dot file formed using the graphviz tool:

http://www.graphviz.org/Download.php

4. Run the view-dom pass to view the Dominator tree of a function:

$ opt –view-dom utility.ll

5. View the dot file formed using the graphviz tool:

See also
A list of the other utility passes is available at http://llvm.org/docs/Passes.html#utility-passes

http://llvm.org/docs/Passes.html#utility-passes

Index
A

alias analysis pass
writing / Writing an alias analysis pass, How to do it..., How it works…

analysis pass
writing / Writing an analysis pass, How to do it…, How it works…

analysis passes
using / Using other analysis passes, How to do it…, How it works…
reference link / See also

AST
about / Introduction, Defining Abstract Syntax Tree
defining / Defining Abstract Syntax Tree, How to do it…
URL / See also

AST class
IR code generation methods, defining / Defining IR code generation methods for each AST
class, How to do it…, How it works…

B
binary expression

parsing / Parsing binary expressions, How to do it…, See also
binary operator

defining / Getting ready, How to do it...
working / How it works...
reference link / See also

bugpoint
using / Using bugpoint, How to do it…, How it works…
URL / See also

C
C++ language

parsing, URL / See also, See also, See also
calling convention

defining / Defining the calling convention, How to do it…
C Code

converting, to LLVM IR / C Code to LLVM IR
C frontend clang

using / Using the C frontend Clang, How to do it…, How it works...
Clang/LLVM

cross-compiling / Cross-compiling Clang/LLVM, How it works..., How to do it..., How it
works...

Clang frontend
about / Getting ready...

clang static analyzer
using / Using the Clang Static Analyzer, How it works…

code
generating, for loops / Generating code for loops, How to do it..., How it works...

code emission
about / Code emission

code emission phase
about / Code emission, How to do it…

common subexpression
eliminating, from machine code / Eliminating common subexpression from machine code,
How to do it…, How it works…

Context free grammar (CFG) / How it works...
control flow graph (CFG) / How it works…
cross-compiler / Cross-compiling Clang/LLVM
C source code

converting, to LLVM assembly / Converting a C source code to LLVM assembly, How it
works...

D
DAG

about / Introduction, Introduction
instruction, selecting from / Selecting instruction from the DAG, How it works…

dead code elimination pass
writing / Writing a dead code elimination pass, Getting ready, How to do it…, How it
works…

decision making paradigms
handling / Handling decision making paradigms – if/then/else constructs, How to do it...,
How it works…
if/then/else / Getting ready, How to do it..., How it works…

DragonEgg
using / Using DragonEgg, How to do It…, See also
URL / See also

E
emscripten

URL / Getting ready, See more
enumeration (enum) / How to do it…
exception format, LLVM

URL / See also
exception handling, LLVM / Exception handling in LLVM, How to do it…, How it works…
expressions

reassociating / Reassociating expressions, How it works …

F
frame lowering

implementing / Implementing frame lowering, How to do it…, How it works…

G
garbage collection

URLs / See also
garbage collector

writing, with LLVM / Writing the garbage collector with LLVM, How to do it…, How it
works…

GNU Compiler Collection (GCC) / Understanding modular design
GO frontend

using / Using the GO frontend, How it works…
graphs, in debug mode

reference link / See also
GraphViz

used, for visualizing LLVM IR CFG / Visualizing LLVM IR CFG using GraphViz, How to
do it…

graphviz tool
URL / Getting ready

H
hexdump tool / How to do it...

I
if/then/else construct

about / Handling decision making paradigms – if/then/else constructs
if else statement, clang

reference link / See also
inlining transformation pass

writing / Writing an inlining transformation pass, How to do it…, How it works...
instruction

scheduling / Scheduling instructions
selecting, from DAG / Selecting instruction from the DAG, How it works…
scheduling, in SelectionDAG / Scheduling instructions in SelectionDAG, How it works…
printing / Printing an instruction, How to do it…, How it works…
selecting / Selecting an instruction, Getting ready, How to do it…

instruction encoding
adding / Adding instruction encoding, How to do it…

instruction selector

writing / Writing an instruction selector, How to do it…, How it works…
instruction set

defining / Defining an instruction set, How it works…, Defining the instruction set
Intermediate Representation (IR) / Understanding modular design
IR

converting, to LLVM bitcode / Converting IR to LLVM bitcode, How to do it..., There's
more..., See also
vectorizing / Vectorizing IR, Getting ready, How to do it..., How it works…

IR code
generating, for expressions / Generating IR code for expressions, See also
generating, for function / Generating IR code for functions, How to do it…, How it
works…

IR code generation methods
defining, for AST class / Defining IR code generation methods for each AST class, How to
do it…, How it works…

IR functions
__cxa_throw / How it works…
__cxa_begin_catch / How it works…
__cxa_end_catch / How it works…

IR optimization
about / IR optimization

IR optimization support
adding / Adding IR optimization support, See also

J
JavaScript

LLVM IR, connecting to / Converting LLVM IR to JavaScript, How to do it…
JIT support

adding / Adding JIT support, How to do it..., How it works…

L
Left Hand Side (LHS) / How to do it…
lexer

about / Implementing a lexer
implementing / Implementing a lexer, How to do it…, How it works…
for C++ language, URL / See also
running, on toy language / Running lexer and parser on our TOY language, How to do it…

live interval
analyzing / Analyzing live intervals, Getting ready, How to do it…, How it works…
about / Analyzing live intervals

live variable
about / Analyzing live intervals

LLDB commands

URL / See also
llgo

URL / See also
lli tool command / How it works...
LLVM

exception handling / Exception handling in LLVM, How to do it…, How it works…
garbage collector, writing with / Writing the garbage collector with LLVM, How to do it…,
How it works…

llvm-dis command / How it works...
llvm-dis tool / Converting LLVM bitcode back to LLVM assembly
llvm-link tool / How to do it...
LLVM alias analysis

reference link / See also
LLVM assembly

URL / See also
C source code, converting to / Converting a C source code to LLVM assembly, How it
works...
LLVM bitcode, converting back to / Converting LLVM bitcode back to LLVM assembly

LLVM bitcode
IR, converting to / Converting IR to LLVM bitcode, How to do it..., How it works...,
There's more...
converting, to target machine assembly / Converting LLVM bitcode to target machine
assembly, How it works...
converting, back to LLVM assembly / Converting LLVM bitcode back to LLVM assembly
linking / Linking LLVM bitcode, How it works...
executing / Executing LLVM bitcode, How it works...

LLVM bitstream file format
URL / See also

LLVM IR
URL / See also
transforming / Transforming LLVM IR, How to do it..., There's more...
combining / Combining LLVM IR, How to do it…, How it works…
C Code, converting to / C Code to LLVM IR
converting, to SelectionDAG / LLVM IR to SelectionDAG
converting, to JavaScript / Converting LLVM IR to JavaScript, How to do it…

LLVM IR CFG
visualizing, GraphViz used / Visualizing LLVM IR CFG using GraphViz, How to do it…

LLVM IR form / Introduction
LLVM IR instruction

about / The life of an LLVM IR instruction
LLVM pass

writing / Writing your own LLVM pass, Getting ready, How to do it…
reference link / See also

LLVMPasses.a / How it works...
LLVM PassManager / How it works...
LLVM utility passes

using / Using LLDB, How to do it…
Loop-Invariant Code Motion (LICM) / Transforming and optimizing loops
loop deletion / Transforming and optimizing loops
loops

code, generating for / How to do it..., How it works...
reference link / See also
transforming / Transforming and optimizing loops, How to do it…, How it works…
optimizing / Transforming and optimizing loops, How to do it…, How it works…

loop vectorization
about / Vectorizing IR

M
MachineBasicBlock class

implementing / Implementing the MachineBasicBlock class, How to do it…, How it
works…

machine code
about / Introduction
common subexpression, eliminating from / Eliminating common subexpression from
machine code, How to do it…, How it works…

machine code descriptor
adding / Adding a machine code descriptor, How it's done…

machine DAG
target-independent DAG, converting to / Conversion from target-independent DAG to
machine DAG

MachineFunction class
implementing / Implementing the MachineFunction class, How it works…

MachineInstrBuilder class
implementing / How to do it…

mapping of virtual registers, on physical registers
Direct Mapping / How it works…
Indirect Mapping / How it works…

memory optimization
pass, writing for / Writing a pass for memory optimization, How to do it…, How it
works…

memory optimization passes
reference link / See also

modular design
about / Understanding modular design
optimizations, running / How to do it..., How it works..., There's more...

modular design;about / Understanding modular design

multiple instructions
lowering to / Lowering to multiple instructions, How to do it…

MyPass.o object file / How it works...
MyPasses.a library / How it works...

N
native assembler / Cross-compiling Clang/LLVM
new pass

pass, using into / Using another pass in a new pass, How it works…

O
optimization

levels / Various levels of optimization, How to do it…
optimization passes

about / Other optimization passes, How to do it…, How it works…
opt tool / Getting ready, How to do it...

about / Introduction
reference link / See Also
pass, running with / Running your own pass with the opt tool, How to do it…

P
parser

about / Implementing a parser
implementing / Getting ready, How it works…
running, on toy language / Running lexer and parser on our TOY language, How it works…
Error handling, URL / See also

pass
running, with opt tool / Running your own pass with the opt tool, How to do it…
using, into new pass / Using another pass in a new pass, How it works…
registering, with pass manager / Registering a pass with pass manager, How to do it…,
How it works…
writing, for memory optimization / Writing a pass for memory optimization, How to do
it…, How it works…

PassA / How it works...
Pass class

reference link / See also
pass manager

pass, registering with / Registering a pass with pass manager, How to do it…, How it
works…
reference link / See Also

PHI node / Getting ready
prologue-epilogue code

inserting / Inserting the prologue-epilogue code, How to do it…, How it works…

R
register allocation

about / Register allocation
registers

allocating / Allocating registers, How to do it…
defining / Defining registers and registers sets, How it works…

registers sets
defining / Defining registers and registers sets, How it works…

Right Hand Side (RHS) / How to do it…

S
sample backend

about / A sample backend
sanitizers

using / Using sanitizers, How it works…
URLs / See also…

SDAG
phases / The life of an LLVM IR instruction

SelectionDAG
LLVM IR, converting to / LLVM IR to SelectionDAG
legalizing / Legalizing SelectionDAG, How to do it…, How it works…
optimizing / Optimizing SelectionDAG, How it works…
instruction, scheduling in / Scheduling instructions in SelectionDAG, How it works…

Selection DAG legalization
about / SelectionDAG legalization

Selection DAG node
about / LLVM IR to SelectionDAG

sibling call optimization
about / Sibling call optimisation
working / How to do it…, How it works…

simple expression
parsing / Parsing simple expressions, How to do it…

single static assignment (SSA) / Getting ready
static analyzer and checkers

URL / See also
static single assignment (SSA) / Introduction
Static Single Assignment (SSA) / Understanding modular design, How to do it…
subtarget

supporting / Supporting a subtarget, How to do it…
Superword-Level Parallelism (SLP)

about / Vectorizing IR

T
TableGen

used, for describing target / Describing targets using TableGen, How it works
tablegen function / Defining registers and registers sets
tail call optimization

about / Tail call optimization
working / How to do it…, How it works…

target
describing, TableGen used / Describing targets using TableGen, How it works
registering / Registering a target, How to do it…, How it works…

target-independent DAG
converting, to machine DAG / Conversion from target-independent DAG to machine DAG

target machine assembly
LLVM bitcode, converting to / Converting LLVM bitcode to target machine assembly, How
it works...

toy language
defining / Defining a TOY language, How to do it…
lexer running on / Running lexer and parser on our TOY language, How it works…
parser, running on / How it works…

transformation passes
reference link / See also

U
unary operator

defining / Getting ready, How to do it...
working / How it works...
reference link / See also

Utility passes
using / Using LLVM utility passes, How to do it...
URL / See also

V
Valgrind

about / Using sanitizers
vectorization

about / Vectorizing IR

	LLVM Cookbook
	Table of Contents
	LLVM Cookbook
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. LLVM Design and Use
	Introduction
	Understanding modular design
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Cross-compiling Clang/LLVM
	Getting ready
	How to do it...
	How it works...

	Converting a C source code to LLVM assembly
	Getting ready
	How to do it...
	How it works...
	See also

	Converting IR to LLVM bitcode
	Getting Ready
	How to do it...
	How it works...
	There's more...
	See also

	Converting LLVM bitcode to target machine assembly
	Getting ready
	How to do it...
	How it works...
	There's more...

	Converting LLVM bitcode back to LLVM assembly
	Getting ready
	How to do it...
	How it works...

	Transforming LLVM IR
	Getting ready
	How to do it...
	How it works...
	There's more...

	Linking LLVM bitcode
	Getting ready
	How to do it...
	How it works...

	Executing LLVM bitcode
	Getting ready
	How to do it...
	How it works...
	See also

	Using the C frontend Clang
	Getting ready
	How to do it…
	How it works...
	See also

	Using the GO frontend
	Getting ready
	How to do it…
	How it works…
	See also

	Using DragonEgg
	Getting ready
	How to do It…
	See also

	2. Steps in Writing a Frontend
	Introduction
	Defining a TOY language
	How to do it…

	Implementing a lexer
	Getting ready
	How to do it…
	How it works…
	See also

	Defining Abstract Syntax Tree
	Getting ready
	How to do it…
	How it works…
	See also

	Implementing a parser
	Getting ready
	How to do it…
	How it works…
	See also

	Parsing simple expressions
	Getting ready
	How to do it…
	How it works…

	Parsing binary expressions
	Getting ready
	How to do it…
	See also

	Invoking a driver for parsing
	How to do it…
	How it works…
	See also

	Running lexer and parser on our TOY language
	Getting ready
	How to do it…
	How it works…
	See also

	Defining IR code generation methods for each AST class
	Getting ready
	How to do it…
	How it works…

	Generating IR code for expressions
	How to do it…
	See also

	Generating IR code for functions
	How to do it…
	How it works…
	See also

	Adding IR optimization support
	How to do it…
	See also

	3. Extending the Frontend and Adding JIT Support
	Introduction
	Handling decision making paradigms – if/then/else constructs
	Getting ready
	How to do it...
	How it works…
	See also

	Generating code for loops
	Getting ready
	How to do it...
	How it works...
	See also

	Handling user-defined operators – binary operators
	Getting ready
	How to do it...
	How it works...
	See also

	Handling user-defined operators – unary operators
	Getting ready
	How to do it...
	How it works...
	See also

	Adding JIT support
	How to do it...
	How it works…

	4. Preparing Optimizations
	Introduction
	Various levels of optimization
	Getting ready...
	How to do it…
	How it works…
	See Also

	Writing your own LLVM pass
	Getting ready
	How to do it…
	How it works
	See also

	Running your own pass with the opt tool
	How to do it…
	How it works…
	See also

	Using another pass in a new pass
	Getting ready
	How to do it…
	How it works…
	There's more…

	Registering a pass with pass manager
	Getting ready
	How to do it…
	How it works…
	See Also

	Writing an analysis pass
	Getting ready
	How to do it…
	How it works…

	Writing an alias analysis pass
	Getting ready
	How to do it...
	How it works…
	See also

	Using other analysis passes
	Getting ready…
	How to do it…
	How it works…
	See also

	5. Implementing Optimizations
	Introduction
	Writing a dead code elimination pass
	Getting ready
	How to do it…
	How it works…
	See also

	Writing an inlining transformation pass
	Getting ready
	How to do it…
	How it works...

	Writing a pass for memory optimization
	Getting ready
	How to do it…
	How it works…
	See also

	Combining LLVM IR
	Getting started
	How to do it…
	How it works…
	See also

	Transforming and optimizing loops
	Getting ready
	How to do it…
	How it works…

	Reassociating expressions
	Getting Ready
	How to do it…
	How it works …

	Vectorizing IR
	Getting ready
	How to do it...
	How it works…
	See also…

	Other optimization passes
	Getting ready…
	How to do it…
	How it works…
	See also

	6. Target-independent Code Generator
	Introduction
	The life of an LLVM IR instruction
	C Code to LLVM IR
	IR optimization
	LLVM IR to SelectionDAG
	SelectionDAG legalization
	Conversion from target-independent DAG to machine DAG
	Scheduling instructions
	Register allocation
	Code emission

	Visualizing LLVM IR CFG using GraphViz
	Getting ready
	How to do it…
	See also

	Describing targets using TableGen
	Getting ready
	How to do it
	How it works
	See also

	Defining an instruction set
	Getting ready
	How to do it…
	How it works…
	See also

	Adding a machine code descriptor
	How it's done…
	How it works…

	Implementing the MachineInstrBuilder class
	How to do it…
	How it works…

	Implementing the MachineBasicBlock class
	How to do it…
	How it works…
	See also

	Implementing the MachineFunction class
	How to do it…
	How it works…
	See also

	Writing an instruction selector
	How to do it…
	How it works…

	Legalizing SelectionDAG
	How to do it…
	How it works…

	Optimizing SelectionDAG
	How to do it…
	How it works…
	See also

	Selecting instruction from the DAG
	How to do it…
	How it works…
	See also

	Scheduling instructions in SelectionDAG
	How to do it…
	How it works…
	See also

	7. Optimizing the Machine Code
	Introduction
	Eliminating common subexpression from machine code
	How to do it…
	How it works…
	See more

	Analyzing live intervals
	Getting ready
	How to do it…
	How it works…
	See also

	Allocating registers
	Getting ready
	How to do it…
	How it works…
	See also

	Inserting the prologue-epilogue code
	How to do it…
	How it works…

	Code emission
	How to do it…

	Tail call optimization
	Getting ready
	How to do it…
	How it works…

	Sibling call optimisation
	Getting ready
	How to do it…
	How it works…

	8. Writing an LLVM Backend
	Introduction
	A sample backend

	Defining registers and registers sets
	Getting ready
	How to do it…
	How it works…
	See also

	Defining the calling convention
	How to do it…
	How it works…
	See also

	Defining the instruction set
	How to do it…
	How it works…
	See also

	Implementing frame lowering
	Getting ready
	How to do it…
	How it works…
	See also

	Printing an instruction
	Getting ready
	How to do it…
	How it works…

	Selecting an instruction
	Getting ready
	How to do it…
	How it works…
	See also

	Adding instruction encoding
	How to do it…
	How it works…
	See also

	Supporting a subtarget
	How to do it…
	See also

	Lowering to multiple instructions
	How to do it…
	How it works…
	See also

	Registering a target
	How to do it…
	How it works…
	See also

	9. Using LLVM for Various Useful Projects
	Introduction
	Exception handling in LLVM
	Getting ready...
	How to do it…
	How it works…
	See also

	Using sanitizers
	Getting ready
	How to do it…
	How it works…
	See also…

	Writing the garbage collector with LLVM
	Getting ready
	How to do it…
	How it works…
	See also

	Converting LLVM IR to JavaScript
	Getting ready
	How to do it…
	See more

	Using the Clang Static Analyzer
	Getting ready
	How to do it…
	How it works…
	See also

	Using bugpoint
	Getting ready
	How to do it…
	How it works…
	See also

	Using LLDB
	Getting ready
	How to do it…
	See also

	Using LLVM utility passes
	Getting ready
	How to do it...
	See also

	Index

